精英家教网 > 高中数学 > 题目详情
12.已知函数f(x)是定义在R上的奇函数,有以下四个推断:
(1)f(0)=0;
(2)若f(-2)=1,则f(2)=1;
(3)若f(x)在[1,+∞)上为减函数,则f(x)在(-∞,-1]上为增函数;
(4)若f(x)在(0,+∞)上有最小值-m,则f(x)在(-∞,0)上有最大值m.
其中推断正确的个数为(  )
A.1B.2C.3D.4

分析 由函数f(x)是定义在R上的奇函数,∴可得(-x)=-f(x),其图象关于原点对称,在对称区间单调性相同,对选项逐一判定即可.

解答 解:∵函数f(x)是定义在R上的奇函数,∴f(-x)=-f(x),其图象关于原点对称,在对称区间单调性相异;
对于(1),f(-0)=-f(0)⇒f(0)=0,故正确;
对于(2),f(-2)=-f(2)⇒f(2)=-1,故错;
对于(3),因为奇函数的图象关于原点对称,所以若f(x)在[1,+∞)上为减函数,则f(x)在(-∞,-1]上为减函数,故错;
对于(4),其图象关于原点对称,f(x)在(0,+∞)上有最小值-m,则f(x)在(-∞,0)上有最大值m,故正确;
故选:B.

点评 本题考查了,奇函数的图象及性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.已知函数f(x)=$\left\{\begin{array}{l}{lo{g}_{2}(1-x)+1,-1≤x<k}\\{x|x-1|,k≤x≤a}\end{array}\right.$,若存在实数k使得函数f(x)的值域为[0,2],则实数a的取值范围是[1,2].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.一直线 l 过直线 l1:2x-y=1 和直线 l2:x+2y=3 的交点 P,且与直线 l3:x-y+1=0 垂直.
(1)求直线 l 的方程;
(2)若直线 l 与圆 C:(x-a)2+y 2=8 (a>0)相切,求 a.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知圆C:x2+y2+4x-4ay+4a2+1=0,直线l:ax+y+2a=0.
(1)当$a=\frac{3}{2}$时,直线l与圆C相较于A,B两点,求弦AB的长;
(2)若a>0且直线l与圆C相切,求圆C关于直线l的对称圆C'的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.一个几何体的三视图如图所示,则该几何体的表面积为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.一片森林原有面积为a,现计划每年采伐一些树木,且每年采伐的森林面积占上一年底森林面积的百分比为q,即第x(x∈N)年底的剩余森林面积为y=a(1-q)x,x与y的部分对应值如表:
 x 0 1 2
 y a $\frac{20}{3}$ $\frac{40}{9}$
(1)求原有森林面积a和每年采伐森林面积的百分比q;
(2)问经过多少年后,剩余的森林面积开始小于原来的$\frac{1}{10}$.
(注:lg2≈0.301,lg3≈0.477)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知抛物线y2=16x的焦点恰好是双曲线$\frac{{x}^{2}}{12}$-$\frac{{y}^{2}}{{b}^{2}}$=1的右焦点,则双曲线的渐近线方程为y=±$\frac{\sqrt{3}}{3}$x.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如图,OABC是四面体,G是△ABC的重心,G2是OG上一点,且OG=3OG1,则(  )
A.$\overrightarrow{O{G_1}}=\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}$B.$\overrightarrow{O{G_1}}=\frac{1}{9}\overrightarrow{OA}+\frac{1}{9}\overrightarrow{OB}+\frac{1}{9}\overrightarrow{OC}$
C.$\overrightarrow{O{G_1}}=\frac{1}{3}\overrightarrow{OA}+\frac{1}{3}\overrightarrow{OB}+\frac{1}{3}\overrightarrow{OC}$D.$\overrightarrow{O{G_1}}=\frac{3}{4}\overrightarrow{OA}+\frac{3}{4}\overrightarrow{OB}+\frac{3}{4}\overrightarrow{OC}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知各项均为正数的等比数列{an}的前n项和为Sn,若a5=2a3+a4,且S5=62.
(1)求数列{an}的通项公式;
(2)设bn=$\frac{{a}_{n+1}}{{S}_{n}{S}_{n+1}}$,数列{bn}的前n项和为Tn,求证:$\frac{1}{3}$≤Tn<$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案