精英家教网 > 高中数学 > 题目详情

【题目】我国古代数学著作《九章算术》有如下问题:“今有器中米,不知其数,前人取半,中人三分取一,后人四分取一,余米一斗五升.问,米几何?”如图是解决该问题的程序框图,执行该程序框图,若输出的S=1.5(单位:升),则输入k的值为(  )

A.4.5
B.6
C.7.5
D.9

【答案】B
【解析】解:模拟程序的运行,可得

n=1,S=k

满足条件n<4,执行循环体,n=2,S=k﹣ =

满足条件n<4,执行循环体,n=3,S= =

满足条件n<4,执行循环体,n=4,S= =

此时,不满足条件n<4,退出循环,输出S的值为

由题意可得: =1.5,解得:k=6.

所以答案是:B.

【考点精析】掌握程序框图是解答本题的根本,需要知道程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形;一个程序框图包括以下几部分:表示相应操作的程序框;带箭头的流程线;程序框外必要文字说明.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】定义:如果函数y=f(x)在定义域内给定区间[a,b]上存在x0(a<x0<b),满足 ,则称函数y=f(x)是[a,b]上的“平均值函数”,x0是它的一个均值点.如y=x2是[﹣1,1]上的平均值函数,0就是它的均值点.现有函数f(x)=x3+mx是区间[﹣1,1]上的平均值函数,则实数m的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】各项均为正数的等比数列{an}的前n项和为Sn , 满足
(1)求a1及通项公式an
(2)若 ,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的右顶点为 ,离心率为
(Ⅰ)求椭圆C的方程;
(Ⅱ)设过右焦点F且斜率不为0的动直线l与椭圆交于M,N两点,过M作直线x=a2的垂线,垂足为M1 , 求证:直线M1N过定点,并求出定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中央政府为了应对因人口老龄化而造成的劳动力短缺等问题,拟定出台“延迟退休年龄政策”,为了了解人们对“延迟退休年龄政策”的态度,责成人社部进行调研,人社部从网上年龄在15~65岁的人群中随机调查100人,调查数据的频率分布直方图和支持“延迟退休”的人数与年龄的统计结果如下:

年龄

[15,25)

[25,35)

[35,45)

[45,55)

[55,65]

支持“延迟退休”的人数

15

5

15

28

17


(1)由以上统计数据填2×2列联表,并判断是否95%的把握认为以45岁为界点的不同人群对“延迟退休年龄政策”的支持有差异;

45岁以下

45岁以上

总计

支持

不支持

总计


(2)若以45岁为分界点,从不支持“延迟退休”的人中按分层抽样的方法抽取8人参加某项活动,现从这8人中随机抽2人.
①抽到1人是45岁以下时,求抽到的另一人是45岁以上的概率;
②记抽到45岁以上的人数为X,求随机变量X的分布列及数学期望.

P(K2≥k0

0.100

0.050

0.010

0.001

k0

2.706

3.841

6.635

10.828


查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱ABC﹣A1B1C1中,AB=BC=CC1=2,AC=2 ,M是AC的中点,则异面直线CB1与C1M所成角的余弦值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设公比不为1的等比数列{an}的前n项和Sn , 已知a1a2a3=8,S2n=3(a1+a3+a5+…+a2n﹣1)(n∈N*).
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=(﹣1)nlog2an , 求数列{bn}的前2017项和T2017

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱ABC﹣A1B1C1中,底面△ABC是等腰直角三角形,且斜边 ,侧棱AA1=2,点D为AB的中点,点E在线段AA1上,AE=λAA1(λ为实数).

(1)求证:不论λ取何值时,恒有CD⊥B1E;
(2)当 时,记四面体C1﹣BEC的体积为V1 , 四面体D﹣BEC的体积为V2 , 求V1:V2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,设椭圆C: =1(a>b>0)的离心率为 ,A,B分别为椭圆C的左、右顶点,F为右焦点.直线y=6x与C的交点到y轴的距离为 ,过点B作x轴的垂线l,D为l 上异于点B的一点,以BD为直径作圆E.

(1)求C 的方程;
(2)若直线AD与C的另一个交点为P,证明PF与圆E相切.

查看答案和解析>>

同步练习册答案