精英家教网 > 高中数学 > 题目详情
14.已知不等式ax2+bx+c>0的解集是$\left\{{x\left|{-\frac{1}{2}<x<1}\right.}\right\}$,则cx2-bx+a<0的解集是(-1,2).

分析 由已知不等式ax2+bx+c>0的解集得到ax2+bx+c=0的两根,得到a,b,c的关系,进一步将cx2-bx+a<0化简解之.

解答 解:不等式ax2+bx+c>0的解集是$\left\{{x\left|{-\frac{1}{2}<x<1}\right.}\right\}$,且a<0,
∴$-\frac{1}{2}$+1=-$\frac{b}{a}$,-$\frac{1}{2}$×1=$\frac{c}{a}$,
∴b=-$\frac{1}{2}$a,c=-$\frac{1}{2}$a,
cx2-bx+a<0化为-$\frac{1}{2}$ax2+$\frac{1}{2}$ax+a<0,即x2-x-2<0,即(x+1)(x-2)<0,解得-1<x<2,
∴则cx2-bx+a<0的解集是(-1,2),
故答案为:(-1,2).

点评 本题考查了一元二次不等式的解法,考查了一元二次方程的根与系数关系,解答的关键是注意c的符号,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.“p∨q为真”是“p为真”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.与y=|x|为同一函数的是(  )
A.$y={(\sqrt{x})^2}$B.$y=\sqrt{x^2}$C.$y=\left\{\begin{array}{l}x,(x>0)\\-x,(x<0)\end{array}\right.$D.$y=\frac{x^2}{x}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设全集I=R,集合A={x|x≥2},B={x|x$<-\sqrt{2}$},则(∁RA)∩B={x|x$<-\sqrt{2}$,x∈R}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.(1)已知f(1-x)=2x+3,求f(x)的解析式;
(2)已知f(x)是二次函数,f(0)=-3,f(-1)=f(3)=0,求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设命题P:“?x∈R,x2-2x>a”,命题Q:“?x∈R,x2+2ax+2=0”;如果“P或Q”为真,“P且Q”为假,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知命题甲为:x>0;命题乙为x2>0,那么(  )
A.甲是乙的充要条件B.甲是乙的充分非必要条件
C.甲是乙的必要不充分条件D.甲是乙的既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=$\left\{\begin{array}{l}{-{x}^{3}+{x}^{2},x<1}\\{alnx,x≥1}\end{array}\right.$,a∈R.
(1)当x<1时,求函数f(x)的单调区间和极值;
(2)对任意给定的正实数a,曲线y=f(x)上是否存在两点P,Q,使得△POQ是以O为直角顶点的直角三角形,且此三角形斜边中点在y轴上?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知f(x)是R上的奇函数,若g(x)=f(x)+4,且g(-2)=3,则g(2)=5.

查看答案和解析>>

同步练习册答案