【题目】已知函数=.
(1)求函数的单调递增区间;
(2)已知在△ABC中,A,B,C的对边分别为a,b,c,若,,求.
【答案】(1)函数的单调递增区间是(2)b=c=2
【解析】
(1)利用诱导公式、二倍角的正弦公式、二倍角的余弦公式以及两角和与差的正弦公式将函数化为,利用正弦函数的单调性解不等式,可得到函数的递增区间;(2)由,求得,利用余弦定理,结合,列方程组可求得的值.
(1)∵ =sin(3π+x)·cos(πx)+cos2(+x),
∴ (cos x)+(sin x)
=,
由 2kπ2x-2kπ+,k∈Z,
可得函数的单调递增区间是k∈Z.
(2)由,得,sin(2A-)+=,
∵0<A<π,∴0<2A<2π,
∵a=2,b+c=4 ①,
根据余弦定理得,
4=+2bccos A=+bc=(b+c)3bc=163bc,
∴bc=4 ②,
联立①②得,b=c=2..
科目:高中数学 来源: 题型:
【题目】在如图所示的几何体中,四边形是正方形,是等腰梯形,,,,.给出下列三个命题:
平面平面;
异面直线与所成角的余弦值为;
直线与平面所成角的正弦值为.
那么,下列命题为真命题的是( )
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】直线与椭圆交于,两点,已知 , ,若椭圆的离心率,又经过点,为坐标原点.
(1)求椭圆的方程;
(2)当时,试问:的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设数列的前项和为,已知(),且.
(1)证明为等比数列,并求数列的通项公式;
(2)设,且证明;
(3)在(2)小问的条件下,若对任意的,不等式恒成立,试求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在圆环形路上有均匀分布的四家工厂甲乙丙丁,每家工厂都有足够的仓库供产品储存.现要将所有产品集中到一家工厂的仓库储存,已知甲乙丙丁四家工厂的产量之比为1∶2∶3∶5.若运费与路程运的数量成正比例,为使选定的工厂仓库储存所有产品时总的运费最省,应选的工厂是( )
A.甲B.乙C.丙D.丁
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,点、,点是圆上一动点,线段的垂直平分线交线段于点,设点的轨迹为曲线.且直线交曲线于两点(点在轴的上方).
(1)求曲线的方程;
(2)试判断直线与曲线的另一交点是否与点关于轴对称?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《九章算术》是中国古代第一部数学专著,成于公元一世纪左右,系统总结了战国、秦、汉时期的数学成就.其中《方田》一章中记载了计算弧田(弧田就是由圆弧和其所对弦所围成弓形)的面积所用的经验公式:弧田面积=(弦×矢+矢×矢),公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差.按照上述经验公式计算所得弧田面积与其实际面积之间存在误差.现有圆心角为,弦长为的弧田.其实际面积与按照上述经验公式计算出弧田的面积之间的误差为( )平方米.(其中,)
A. 15 B. 16 C. 17 D. 18
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com