精英家教网 > 高中数学 > 题目详情
2.已知集合A={x|2x-6≤2-2x≤1},B={x|x∈A∩N},C={x|a≤x≤a+1}.
(Ⅰ)写出集合B的所有子集;
(Ⅱ)若A∩C=C,求实数a的取值范围.

分析 (Ⅰ)根据题意,解2x-6≤2-2x≤1可得集合A,又由B={x|x∈A∩N},即可得集合B,进而由子集的定义可得集合B的子集;
(Ⅱ)根据题意,分析可得C是A的子集,进而有:$\left\{\begin{array}{l}{a≥0}\\{a+1≤2}\end{array}\right.$,解可得a的取值范围.

解答 解:(Ⅰ)对于集合A,因为2x-6≤2-2x≤1,则x-6≤-2x≤0,
解可得:0≤x≤2.
即A={x|0≤x≤2},
又由B={x|x∈A∩N},则B={0,1,2};
故B的子集有∅、{0}、{1}、{2}、{0,1}、{0,2}、{1,2}、{0,1,2};
(Ⅱ)若A∩C=C,则C是A的子集,
则必有:$\left\{\begin{array}{l}{a≥0}\\{a+1≤2}\end{array}\right.$,
解可得:0≤a≤1,
即a的取值范围是:[0,1].

点评 本题考查集合间包含关系的运用,关键是正确解出指数不等式,求出集合A.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.圆O1:(x-2)2+(y+3)2=4与圆O2:(x+1)2+(y-1)2=9的公切线有3条.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的焦点为F1,F2,P是椭圆C上一点,若PF1⊥PF2,$|{{F_1}{F_2}}|=2\sqrt{3}$,△PF1F2的面积为1.
(1)求椭圆C的方程;
(2))如果椭圆C上总存在关于直线y=x+m对称的两点A,B,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.sin$\frac{5π}{3}$的值为(  )
A.$\frac{\sqrt{3}}{2}$B.$\frac{1}{2}$C.-$\frac{\sqrt{3}}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知向量$\overrightarrow{a}$=(2,5),$\overrightarrow{b}$=(x,-2),且$\overrightarrow{a}$∥$\overrightarrow{b}$,则x=$-\frac{4}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数y=f(x)的图象如图所示,则y=f(x)的解析式可能是(  )
A.y=2x-x2-xB.y=$\frac{{2}^{x}sinx}{4x+1}$C.y=(x2-2x)exD.y=$\frac{x}{lnx}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=$\frac{1}{2}$ax2+lnx,a∈R.
(Ⅰ)若曲线y=f(x)与直线y=3x+b在x=1处相切,求实数a,b的值;
(Ⅱ)求函数y=f(x)的单调区间;
(Ⅲ)若a=0时,函数h(x)=f(x)+bx有两个不同的零点,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知sinα=$\frac{3}{5}$,且α∈($\frac{π}{2}$,π).
(1)求tan(α+$\frac{π}{4}$)的值;
(2)若β∈(0,$\frac{π}{2}$),且cos(α-β)=$\frac{1}{3}$,求cosβ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设△ABC的内角A,B,C的对边分别为a,b,c,且a=$\sqrt{7}$,3sinA=$\sqrt{7}$sinB,cosC=$\frac{2\sqrt{7}}{7}$,则边c=2.

查看答案和解析>>

同步练习册答案