精英家教网 > 高中数学 > 题目详情
如图,在四面体ABCD中,AB⊥面BCD,面ABC⊥面ACD,且∠ACB=∠CBD=45°,
(1)求证:BC⊥CD;
(2)求直线AC与平面ABD所成角的大小.
考点:直线与平面所成的角,直线与平面垂直的性质
专题:空间位置关系与距离,空间角
分析:(Ⅰ)由已知得平面ABC⊥面BCD,面ABC⊥面ACD,从而CD⊥面ABC,由此能证明BC⊥CD.
(Ⅱ)由已知得面ABD⊥面BCD,BD是交线,过点C作CE⊥BD,则CE⊥平面ABD,连结AE,得∠CAE是直线与面ABD所成的角,由此能求出直线AC与平面ABD所成角.
解答: (Ⅰ)证明:∵AB⊥平面BCD,AB?平面ABC,
∴平面ABC⊥面BCD,又面ABC⊥面ACD,面BCD∩面ACD=CD,
∴CD⊥面ABC,∵CD?平面ABC,
∴BC⊥CD.
(Ⅱ)解:∵AB⊥平面BCD,AB?平面ABD,
∴面ABD⊥面BCD,BD是交线,
过点C作CE⊥BD,E是垂足,
则CE⊥平面ABD,连结AE,
得∠CAE是直线与面ABD所成的角,
由题意得BC是AC在面BCD上的射影,
由∠ACB=45°,得BC=
2
2
AC,
∵CE⊥BD,∠CBD=45°,∴CE=
2
2
BC=
1
2
AC

在Rt△ACE中,sin∠CAE=
CE
AC
=
1
2
,∴∠CAE=30°,
∴直线AC与平面ABD所成角为30°.
点评:本题考查线面平行,线线垂直的性质的应用及证明,考查线面所成角的求法,解题时要注意空间中线线、线面、面面间的位置关系及性质的合理运用,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知直线l1:x+my+1=0与l2:mx+y+1=0
(1)当l1⊥l2时,求m;
(2)当l1∥l2时,求m.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin(x+θ)+
3
cos(x+θ),θ∈[-
π
2
π
2
]
,且函数f(x)是偶函数,则θ的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

证明:
3-4cos2A+cos4A
3+4cos2A+cos4A
=tan4A.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD中,平面PAD⊥平面ABCD,∠ABC=∠BCD=90°,PA=PD=DC=CB=
1
2
AB,E是BP的中点.
(1)求证:PA⊥BD;
(2)求CE与平面PAB所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若直线l上存在不同的三个点A,B,C,使得关于x的方程x2
OA
+x
OB
+
BC
=
0
(x∈R)有解(点O不在直线l上),则此方程的解集为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
b
为不共线的单位向量,其夹角θ,设
AB
a
+
b
AC
=
a
b
,有下列四个命题:
p1:|
a
+
b
|>|
a
-
b
|?θ∈(0,
π
2
);p2:|
a
+
b
|>|
a
-
b
|?θ∈(
π
2
,π);
p3:若A,B,C共线?λ+μ=1;p4:若A,B,C共线?λ•μ=1.其中真命题的是(  )
A、p1,p4
B、p1,p3
C、p2,p3
D、p2,p4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知一个空间几何体的直观图和三视图(尺寸如图所示)
(1)设点M为棱PD中点,求证:EM∥平面ABCD;
(2)线段PD上是否存在一点N,使得直线BN与平面PCD所成角的正弦值等于
2
5
?若存在,确定点N的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设有二元关系f(x,y)=(x-y)2+a(x-y)-1,已知曲线Γ:f(x,y)=0
(1)若a=2时,正方形ABCD的四个顶点均在曲线上,求正方形ABCD的面积;
(2)设曲线C与x轴的交点是M、N,抛物线E:y=
1
2
x2+1与 y 轴的交点是G,直线MG与曲线E交于点P,直线NG 与曲线E交于Q,求证:直线PQ过定点(0,3).
(3)设曲线C与x轴的交点是M(u,0)、N(v,0),可知动点R(u,v)在某确定的曲线上运动,曲线与上述曲线C在a≠0时共有4个交点,其分别是:A(x1,|x2)、B(x3,x4)、C(x5,x6)、D(x7,x8),集合X={x1,x2,…,x8}的所有非空子集设为Yi=1,2,…,255),将Yi中的所有元素相加(若Yi中只有一个元素,则和是其自身)得到255个数y1、y2、…、y255,求y13+y23+…+y2553的值.

查看答案和解析>>

同步练习册答案