精英家教网 > 高中数学 > 题目详情

【题目】【选修4-4:坐标系与参数方程】

在平面直角坐标系,已知曲线为参数),在以原点为极点, 轴的非负半轴为极轴建立的极坐标系中,直线的极坐标方程为

(1)求曲线的普通方程和直线的直角坐标方程;

(2)过点且与直线平行的直线 两点,求点 的距离之积。

【答案】(1)曲线 ,直线的直角坐标方程;(2)1.

【解析】试题分析:(1)先根据三角函数平方关系消参数得曲线化为普通方程,再根据 将直线的极坐标方程化为直角坐标方程;(2)根据题意设直线参数方程,代入C方程,利用参数几何意义以及韦达定理得点 的距离之积

试题解析:(1)曲线化为普通方程为:

,得

所以直线的直角坐标方程为

(2)直线的参数方程为为参数),

代入化简得:

两点所对应的参数分别为,则

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某省电视台为了解该省卫视一档成语类节目的收视情况,抽查东西两部各5个城市,得到观看该节目的人数(单位:千人)如下茎叶图所示,其中一个数字被污损.

(I)求东部观众平均人数超过西部观众平均人数的概率.

(II)节目的播出极大激发了观众随机统计了4位观众的周均学习成语知识的的时间y (单位:小时)与年龄x(单位:岁),并制作了对照表(如下表所示)

由表中数据分析,xy呈线性相关关系,试求线性回归方程,并预测年龄为60岁观众周均学习成语知识的时间.

参考数据:线性回归方程中的最小二乘估计分别是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是平行四边形, ,侧面底面 分别为 的中点,点在线段上.

(1)求证: 平面

(2)如果直线与平面所成的角和直线与平面所成的角相等,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

处取极值在点处的切线方程

)当有唯一的零点求证

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(I)若,求曲线处的切线方程;

(II)讨论函数上的单调性;

(III)若存在,使得成立,求实数a的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市垃圾处理站每月的垃圾处理量最少为400吨,最多为600吨,月处理成本(元)与月垃圾处理量(吨)之间的函数关系可近似地表示为且每处理一吨垃圾得到可利用的资源值为100

(1)该站每月垃圾处理量为多少吨时,才能使每吨垃圾的平均处理成本最低?

(2)该站每月能否获利?如果获利,求出最大利润;如果不获利,则需要市财政补贴,至少补贴多少元才能使该站不亏损?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设有一个正方形网格,其中每个最小正方形的边长都为5 cm.现用直径为2 cm的硬币投掷到此网格上,求硬币落下后与格线有公共点的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

Ⅰ)若,证明:函数上单调递减;

Ⅱ)是否存在实数,使得函数内存在两个极值点?若存在,求实数的取值范围;若不存在,请说明理由. (参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业有甲、乙两套设备生产同一种产品,为了检测两套设备的生产质量情况,随机从两套设备生产的大量产品中各抽取了50件产品作为样本,检测一项质量指标值,若该项质量指标值落在内,则为合格品,否则为不合格品. 表1是甲套设备的样本的频数分布表,图1是乙套设备的样本的频率分布直方图.

表1:甲套设备的样本的频数分布表

质量指标值

[95,100)

[100,105)

[105,110)

[110,115)

[115,120)

[120,125]

频数

1

5

18

19

6

1

图1:乙套设备的样本的频率分布直方图

(Ⅰ)将频率视为概率. 若乙套设备生产了5000件产品,则其中的不合格品约有多少件;

(Ⅱ)填写下面列联表,并根据列联表判断是否有90%的把握认为该企业生产的这种产品的质量指标值与甲、乙两套设备的选择有关;

甲套设备

乙套设备

合计

合格品

不合格品

合计

(Ⅲ)根据表1和图1,对两套设备的优劣进行比较.

附:

.

查看答案和解析>>

同步练习册答案