精英家教网 > 高中数学 > 题目详情

某车站每天上午发出两班客车,每班客车发车时刻和发车概率如下:
第一班车:在8:00、8:20、8:40发车的概率分别为数学公式
第二班车:在9:00、9:20、9:40发车的概率分别为数学公式
两班车发车时刻是相互独立的,一位旅客8:10到达车站乘车
求:(1)该旅客乘第一班车的概率;
(2)该旅客候车时间(单位:分钟)的分布列;
(3)该旅客候车时间的数学期望.

解:(1)第一班若在8:20或8:40发出,则旅客能乘到,这两个事件是互斥的,
根据互斥事件的概率公式得到其概率为P=+=
(2)由题意知候车时间X的可能取值是10,30,50,70,90
根据条件中所给的各个事件的概率,得到
P(X=10)=,P(X=30)=,P(X=50)=×=
P(X=70)=×=,P(X=90)=
∴旅客候车时间的分布列为:
候车时间X(分)1030507090
概率
(3)候车时间的数学期望为
10×+30×+50×+70×+90×=30.
即这旅客候车时间的数学期望是30分钟.
分析:(1)第一班若在8:20或8:40发出,则旅客能乘到,这两个事件是互斥的,根据互斥事件的概率公式得到其概率.
(2)由题意知候车时间X的可能取值是10,30,50,70,90,根据条件中所给的各个事件的概率,和两班客车发出时刻是相互独立的,得到各个变量对应的概率,写出分布列.
(3)根据上一问做出的分布列,代入求概率的公式,求出随机变量的期望值,得到旅客候车时间的数学期望.
点评:本题考查互斥事件的概率公式,考查离散型随机变量的分布列和期望值,考查相互独立事件同时发生的概率,考查学生的计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某车站每天上午发出两班客车,第一班客车在8:00,8:20,8:40这三个时刻随机发出,且在8:00发出的概率为
1
4
,8:20发出的概率为
1
2
,8:40发出的概率为
1
4
;第二班客车在9:00,9:20,9:40这三个时刻随机发出,且在9:00发出的概率为
1
4
,9:20发出的概率为
1
2
,9:40发出的概率为
1
4
.两班客车发出时刻是相互独立的,一位旅客预计8:10到站.求:
(1)请预测旅客乘到第一班客车的概率;
(2)旅客候车时间的分布列;
(3)旅客候车时间的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

某车站每天上午发出两班客车(每班客车只有一辆车),第一班客车在8:00,8:20,8:40这三个时刻随机发出,且在8:00发出的概率为
1
4
,8:20发出的概率为
1
2
,8:40发出的概率为
1
4
;第二班客车在9:00,9:20,9:40这三个时刻随机发出,且在9:00发出的概率为
1
4
,9:20发出的概率为
1
2
,9:40发出的概率为
1
4
.两班客车发出时刻是相互独立的,一位旅客预计8:10到站.求:
(1)请预测旅客乘到第一班客车的概率;
(2)求旅客候车时间不超过50分钟的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•黄冈模拟)某车站每天上午发出两班客车,每班客车发车时刻和发车概率如下:
第一班车:在8:00、8:20、8:40发车的概率分别为
1
4
1
2
1
4

第二班车:在9:00、9:20、9:40发车的概率分别为
1
4
1
2
1
4

两班车发车时刻是相互独立的,一位旅客8:10到达车站乘车
求:(1)该旅客乘第一班车的概率;
(2)该旅客候车时间(单位:分钟)的分布列;
(3)该旅客候车时间的数学期望.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年江西师大附中高三5月模拟考试理科数学试卷(解析版) 题型:解答题

某车站每天上午发出两班客车(每班客车只有一辆车)。第一班客车在8∶00,8∶20,8∶40这三个时刻随机发出,且在8∶00发出的概率为,8∶20发出的概率为,8∶40发出的概率为;第二班客车在9∶00,9∶20,9∶40这三个时刻随机发出,且在9∶00发出的概率为,9∶20发出的概率为,9∶40发出的概率为.两班客车发出时刻是相互独立的,一位旅客预计8∶10到站.求:

(1)请预测旅客乘到第一班客车的概率;

(2)求旅客候车时间的分布列和数学期望。

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年河北省高三调研理科数学试卷(4) 题型:解答题

某车站每天上午发出两班客车,第一班客车在8∶00,8∶20,8∶40这三个时刻随机发出,且在8∶00发出的概率为,8∶20发出的概率为,8∶40发出的概率为;第二班客车在9∶00,9∶20,9∶40这三个时刻随机发出,且在9∶00发出的概率为,9∶20发出的概率为,9∶40发出的概率为 .两班客车发出时刻是相互独立的,一位旅客预计8∶10到站.求:

(1)请预测旅客乘到第一班客车的概率;

(2)旅客候车时间的分布列;

(3)旅客候车时间的数学期望。

 

查看答案和解析>>

同步练习册答案