精英家教网 > 高中数学 > 题目详情
已知△OFQ的面积为2
6
,且
OF
FQ
=m,?
(1)设
6
<m<4
6
,求向量
OF
FQ
的夹角θ的取值范围;?
(2)设以O为中心,F为焦点的双曲线经过点Q(如图),|
OF
|=c,m=(
6
4
-1)c2,当|
OQ
|取最小值时,求此双曲线的方程.
分析:(1)利用△OFQ的面积为2
6
,且
OF
FQ
=m,可求tanθ的值,根据m的范围,即可求得向量
OF
FQ
的夹角θ的取值范围;
(2)利用|
OF
|=c,
OF
FQ
═(
6
4
-1)c2,可求|
OQ
|,利用基本不等式求最小值,从而可求双曲线的方程.
解答:解:(1)由已知,△OFQ的面积为2
6
,且
OF
FQ
=m,得
1
2
|
OF
|•|
FQ
|sin(π-θ)=2
6
|
OF
|•|
FQ
|•cosθ=m
(2分)
tanθ=
4
6
m

6
<m<4
6
,∴1<tanθ<4,
π
4
<θ<arctan4.(6分)
(2)设所求的双曲线方程为
x2
a2
-
y2
b2
=1,(a>0,b>0),Q(x1,y1),则
FQ
=(x1-c,y1
∵△OFQ的面积
1
2
|
OF
||y1|=2
6
,∴y1
4
6
c

又由
OF
FQ
=(c,0)•(x1-c,y1)=(x1-c)c=(
6
4
-1)c2,∴x1=
6
4
c,(8分)
|
OQ
|=
x12+y12
=
3c2
8
+
96
c2
12
,当且仅当c=4时,|
OQ
|最小.
此时Q的坐标为(
6
6
),或(
6
,-
6
).
由此可得
6
a2
-
6
b2
=1
a2+b2=16
,解得
a2=4
b2=12.
(11分)
故所求方程为
x2
4
-
y2
12
=1.(12分)
点评:本题考查向量知识的运用,考查双曲线标准方程的求解,考查基本不等式的运用,正确运用向量的数量积公式是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知△OFQ的面积为2
6
,且
OF
FQ
=m

(1)当
6
<m<4
6
时,求向量
OF
FQ
的夹角θ的取值范围;
(2)设|
OF
|=c,m=(
6
4
-1)c2
,若以中心O为坐标原点,焦点F在x非负半轴上的双曲线经过点Q,当|
OQ
|
取得最小值时,求此双曲线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,已知△OFQ的面积为S,且
OF
FQ
=1

(Ⅰ)若
1
2
<S<
3
2
,求
OF
FQ
的范围;
(Ⅱ)设|
OF
|=c(c≥2),S=
3
4
c.
若以O为中心,F为一个焦点的椭圆经过点Q,以c为变量,当|
OQ
|
取最小值时,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△OFQ的面积为2
6
,且
OF
FQ
=m

(1)设
6
<m<4
6
,求向量
OF
FQ
的夹角θ
正切值的取值范围;
(2)设以O为中心,F为焦点的双曲线经过点Q(如图),|
OF
|=c,m=(
6
4
-1)c2
,当|
OQ
|
取得最小值时,求此双曲线的方程.
(3)设F1为(2)中所求双曲线的左焦点,若A、B分别为此双曲线渐近线l1、l2上的动点,且2|AB|=5|F1F|,求线段AB的中点M的轨迹方程,并说明轨迹是什么曲线.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•天津一模)已知△OFQ的面积为2
6
,且
OF
FQ
=m.
(1)设4
2
<m<4
6
,求向量
OF
FQ
夹角θ的取值范围;
(2)设以O为中心,F为焦点的双曲线经过点Q(如图),若|
OF
|=c,m=(
6
4
-1)c2
,当|
OQ
|取最小值时,求此双曲线的方程.

查看答案和解析>>

同步练习册答案