精英家教网 > 高中数学 > 题目详情
已知椭圆是椭圆的左右焦点,且椭圆经过点.
(1)求该椭圆方程;
(2)过点且倾斜角等于的直线,交椭圆于两点,求的面积.
(1);(2)

试题分析:(1)求椭圆标准方程,就是要求,也即要找到关于的两个条件,本题中有,又有椭圆过点,把点坐标代入椭圆方程又得到一个关系式,解之即得;(2)本题是直线与椭圆相交问题,如果交点坐标能简单求出,那么我们就求出交点坐标,然后再解题,但一般情况下,这类问题中都含有参数,或者交战坐标很复杂,不易求得,这时我们采取“设而不求”的方法,即设交点为,在把直线方程代入椭圆(或其他圆锥曲线)方程消去得关于的二次方程,则有,则,本题有,由此可求出面积.
(1),则椭圆方程为.      6分
(2)设,直线.        8分
,        10


.      14分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

[2014·绵阳模拟]在平面直角坐标系xOy中,椭圆C:=1的左、右焦点分别是F1、F2,P为椭圆C上的一点,且PF1⊥PF2,则△PF1F2的面积为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知点是椭圆上任一点,点到直线的距离为,到点的距离为,且.直线与椭圆交于不同两点(都在轴上方),且
(1)求椭圆的方程;
(2)当为椭圆与轴正半轴的交点时,求直线方程;
(3)对于动直线,是否存在一个定点,无论如何变化,直线总经过此定点?若存在,求出该定点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知P(x,y)为椭圆上一点,F为椭圆C的右焦点,若点M满足,则的最小值为(      )
A.B.3C.D.1

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的中心在原点,焦点在轴上,离心率为,它的一个焦点恰好与抛物线的焦点重合.
求椭圆的方程;
设椭圆的上顶点为,过点作椭圆的两条动弦,若直线斜率之积为,直线是否一定经过一定点?若经过,求出该定点坐标;若不经过,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知双曲线C:离心率是,过点,且右支上的弦过右焦点
(1)求双曲线C的方程;
(2)求弦的中点的轨迹E的方程;
(3)是否存在以为直径的圆过原点O?,若存在,求出直线的斜率k 的值.若不存在,则说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设F1、F2分别是椭圆(a>b>0)的左、右焦点,若在直线x=上存在P,使线段PF1的中垂线过点F2,则椭圆离心率的取值范围是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆的一个焦点与抛物线的焦点重合,则该椭圆的离心率是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知为椭圆的两个焦点,过的直线交椭圆于两点,,
(   )
A.B.C.D.

查看答案和解析>>

同步练习册答案