分析 由三视图可知该几何体一个四棱锥,由三视图求出几何元素的长度,由面积公式求出几何体的表面积.
解答 解:根据三视图可知几何体是一个四棱锥
底面是一个边长为2的正方形,PE⊥面ABCD,且PE=2,
其中E、F分别是BC、AD的中点,连结EF、PA,
在△PEB中,PB=$\sqrt{5}$,同理可得PC=$\sqrt{5}$,
∵PE⊥面ABCD,∴PE⊥CD,
∵CD⊥BC,BC∩PE=E,∴CD⊥面PBC,则CD⊥PC,
在△PCD中,PD=$\sqrt{5+4}$=3,
同理可得PA=3,则PF⊥AD,
在△PDF中,PF=$\sqrt{9-1}$=2$\sqrt{2}$
∴此几何体的表面积S=2×2+$\frac{1}{2}×2×2$+$\frac{1}{2}×2×\sqrt{5}+\frac{1}{2}×2×2\sqrt{2}$=6+2$\sqrt{5}$+2$\sqrt{2}$.
故答案为:6+2$\sqrt{5}$+2$\sqrt{2}$.
点评 本题考查三视图求几何体的表面积,由三视图正确复原几何体是解题的关键,考查空间想象能力和逻辑推理能力.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\sqrt{3}$ | B. | $\sqrt{5}$ | C. | $\sqrt{2}$ | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 52 | B. | 34+9$\sqrt{2}$ | C. | 64 | D. | 34+8$\sqrt{10}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com