精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=x-1+ (aR,e为自然对数的底数).

(1)若曲线yf(x)在点(1,f(1))处的切线平行于x轴,求a的值;

(2)a=1时,若直线lykx-1与曲线yf(x)相切,求l的直线方程.

【答案】(1)e(2)(y=(1-e)x-1.

【解析】

(1)依题意,f′(1)=0,从而可求得a的值;

(2)设切点为(x0,y0),求出函数的切线方程,求出k即可得到结论.

解 (1)f′(x)=1-,因为曲线yf(x)在点(1,f(1))处的切线平行于x轴,所以f′(1)=1-=0,解得a=e.

(2)a=1时,f(x)=x-1+f′(x)=1-.

设切点为(x0y0),

f(x0)=x0-1+kx0-1,

f′(x0)=1-k

②得x0kx0-1+k,即(k-1)(x0+1)=0.

k=1,则②式无解,∴x0=-1,k=1-e.

l的直线方程为y=(1-e)x-1.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】(1)设关于的一元二次方程是从这四个数中任取的一个数,是从这三个数中任取的一个数,求上述方程有实数根的概率.

(2)王小一和王小二约定周天下午在银川大阅城四楼运动街区见面,约定5:00—6:00见面,先到的等另一人半小时,没来就可以先走了,假设他们在自己估计时间内到达的可能性相等,求他们两个能相遇的概率有多大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2x+sinx,且f(y2﹣2y+3)+f(x2﹣4x+1)≤0,则当y≥1时, 的取值范围是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知曲线的参数方程为为参数).以直角坐标系的原点为极点,轴的正半轴为极轴建立坐标系,曲线的极坐标方程为.

(1)求的普通方程和的直角坐标方程;

(2)若过点的直线交于两点,与交于两点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)是定义在R上的奇函数,且当x>0时,f(﹣x)+f(x+3)=0;当x∈(0,3)时,f(x)= ,其中e是自然对数的底数,且e≈2.72,则方程6f(x)﹣x=0在[﹣9,9]上的解的个数为(
A.4
B.5
C.6
D.7

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设定义域为R的函数f(x)= ,则关于x的方程f2(x)+bf(x)+c=0有5个不同的实数解xi(i=1,2,3,4,5),则f(x1+x2+x3+x4+x5+2)=(
A.
B.
C.2
D.1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设a∈R,函数f(x)=lnx﹣ax.
(1)若a=2,求曲线y=f(x)在P(1,﹣2)处的切线方程;
(2)若f(x)无零点,求实数a的取值范围;
(3)若f(x)有两个相异零点x1 , x2 , 求证:x1x2>e2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出以下命题:
①双曲线 ﹣x2=1的渐近线方程为y=± x;
②命题P:x∈R+ , sinx+ ≥1是真命题;
③已知线性回归方程为 =3+2x,当变量x增加2个单位,其预报值平均增加4个单位;
④设随机变量ξ服从正态分布N(0,1),若P(ξ>1)=0.2,则P(﹣1<ξ<0)=0.6;
则正确命题的序号为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若x=3是函数f(x)=(x2+ax+1)ex的极值点,则f(x)的极大值为(  )

A. ﹣2e B. -2 C. 22 D. 6e﹣1

查看答案和解析>>

同步练习册答案