精英家教网 > 高中数学 > 题目详情

【题目】十九大以来,某贫困地区扶贫办积极贯彻落实国家精准扶贫的政策要求,带领广大农村地区人民群众脱贫奔小康。经过不懈的奋力拼搏,新农村建设取得巨大进步,农民年收入也逐年增加。为了更好的制定2019年关于加快提升农民年收人力争早日脱贫的工作计划,该地扶贫办统计了2018年50位农民的年收人并制成如下频率分布直方图:

(1)根据频率分布直方图,估计50位农民的年平均收入(单位:千元)(同一组数据用该组数据区间的中点值表示);

(2)由频率分布直方图,可以认为该贫困地区农民年收入服从正态分布,其中近似为年平均收入,近似为样本方差,经计算得.利用该正态分布,求:

(i)在2019年脱贫攻坚工作中,若使该地区约有占总农民人数的的农民的年收入高于扶贫办制定的最低年收入标准,则最低年收入大约为多少千元?

(ii)为了调研“精准扶贫,不落一人”的政策要求落实情况, 扶贫办随机走访了1000位农民。若每个农民的年收人相互独立,问:这1000位农民中的年收入不少于12.14千元的人数最有可能是多少?

附:参考数据与公式,若,则①;②;③.

【答案】(1)17.40万元 (2) (i) 14.77千元 (ii)978

【解析】

1)由每一个小矩形中点的横坐标乘以频率作和得答案;

2)由题意,XN17.406.92),.

i)由已知数据求得Pxμ﹣σ),进一步求得μ﹣σ得答案;

(ⅱ)求出PX12.14),得每个农民年收入不少于12.14千元的事件概率为0.9773,设1000个农民年收入不少于12.14千元的人数为ξ,则ξB103p),求出恰好有k个农民的年收入不少于12.14千元的事件概率,由1,得k1001p,结合1001p978.233,对k分类分析得答案.

解:(1)千元.

(2)有题意,.

(i)

时,满足题意

即最低年收入大约为14.77千元

(ii)由,得

每个农民的年收入不少于12.14千元的事件概率为0.9773,

记1000个农民的年收入不少于12.14千元的人数为,则,其中

于是恰好有个农民的年收入不少于12.14千元的事件概率是

从而由,得

,所以,

时,

时,

由此可知,在所走访的1000位农民中,年收入不少于12.14千元的人数最有可能是978

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,圆,直线,直线过点,倾斜角为,以原点为极点,轴的正半轴为极轴建立极坐标系.

(1)写出直线与圆的交点极坐标及直线的参数方程;

(2)设直线与圆交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)对任意的成立,求实数的取值范围;

(2)若,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正三棱柱中,的面积为.点为线段的中点.

(1)在线段上找一点,使得平面平面,并证明;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P-ABCD中,底面ABCD是平行四边形,AB=2AD=2,∠DAB=60°PA=PC=2,且平面ACP⊥平面ABCD

(Ⅰ)求证:CBPD

(Ⅱ)求二面角C-PB-A的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为为椭圆上不与左右顶点重合的任意一点,分别为的内心、重心,当轴时,椭圆的离心率为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】科研人员在对人体脂肪含量和年龄之间关系的研究中,获得了一些年龄和脂肪含量的简单随机样本数据,如下表:

根据上表的数据得到如下的散点图.

(1)根据上表中的样本数据及其散点图:

(i)求;

(ii)计算样本相关系数(精确到0.01),并刻画它们的相关程度.

(2)若y关于x的线性回归方程为,求的值(精确到0.01),并根据回归方程估计年龄为50岁时人体的脂肪含量。

附:参考数据:

参考公式:相关系数

回归方程中斜率和截距的最小二乘估计公式分别为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左右焦点分别为,左顶点为,离心率为,点是椭圆上的动点,的面积的最大值为.

(1)求椭圆的方程;

(2)设经过点的直线与椭圆相交于不同的两点,线段的中垂线为.若直线与直线相交于点,与直线相交于点,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】新个税法于2019年1月1日进行实施.为了调查国企员工对新个税法的满意程度,研究人员在地各个国企中随机抽取了1000名员工进行调查,并将满意程度以分数的形式统计成如下的频率分布直方图,其中.

(Ⅰ)估计被调查的员工的满意程度的中位数;(计算结果保留两位小数)

(Ⅱ)若按照分层抽样从中随机抽取8人,再从这8人中随机抽取4人,记分数在的人数为,求的分布列与数学期望;

(Ⅲ)以频率估计概率,若该研究人员从全国国企员工中随机抽取人作调查,记成绩在的人数为,若,求的最大值.

查看答案和解析>>

同步练习册答案