A. | [1,4] | B. | [2,+∞) | C. | (2,4) | D. | (4,+∞) |
分析 a,b∈R+,由$(\frac{a+b}{2})^{2}$≥ab,可得$\frac{1}{ab}$≥$\frac{4}{(a+b)^{2}}$.又$a+b+\frac{1}{a}+\frac{1}{b}=5$,可得(a+b)$(1+\frac{1}{ab})$=5≥(a+b)$(1+\frac{4}{(a+b)^{2}})$,化简整理即可得出.
解答 解:∵a,b∈R+,∴$(\frac{a+b}{2})^{2}$≥ab,可得$\frac{1}{ab}$≥$\frac{4}{(a+b)^{2}}$.
∵$a+b+\frac{1}{a}+\frac{1}{b}=5$,
∴(a+b)$(1+\frac{1}{ab})$=5≥(a+b)$(1+\frac{4}{(a+b)^{2}})$,
化为:(a+b)2-5(a+b)+4≤0,
解得1≤a+b≤4,
则a+b的取值范围是[1,4].
故选:A.
点评 本题考查了基本不等式的性质、一元二次不等式的解法,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
x | 4 | 5 | 6 | 7 |
y | 8.2 | 7.8 | 6.6 | 5.4 |
A. | -0.92 | B. | -0.94 | C. | -0.96 | D. | -0.98 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{4}{5}$ | B. | $\frac{1}{10}$ | C. | $\frac{{3\sqrt{10}}}{10}$ | D. | $\frac{{\sqrt{2}}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{8}{3}$ | B. | $\frac{11}{3}$ | C. | $\frac{25}{6}$ | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $(-\frac{5}{2},-2)$ | B. | $(-∞,-\frac{5}{2}]$ | C. | (-∞,-2] | D. | $[-\frac{5}{2},-2]$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com