精英家教网 > 高中数学 > 题目详情
1.圆C:x2+y2-6x+8y+24=0关于直线 l:x-3y-5=0对称的圆的方程是(  )
A.(x+1)2+(y+2)2=1B.(x-1)2+(y-2)2=1C.(x-1)2+(y+2)2=1D.(x+1)2+(y-2)2=1

分析 求出已知圆的圆心关于直线x-3y-5=0对称的圆的圆心,求出半径,即可得到所求结果.

解答 解:C:x2+y2-6x+8y+24=0,圆心坐标为(3,-4),半径为1,则
设(3,-4)关于直线x-3y-5=0对称的点为:(a,b)
则$\left\{\begin{array}{l}{\frac{a+3}{2}-3×\frac{b-4}{2}-5=0}\\{\frac{b+4}{a-3}×\frac{1}{3}=-1}\end{array}\right.$,解得a=1,b=2,
因为圆的半径为:1
所以圆C:x2+y2-6x+8y+24=0关于直线x-3y-5=0对称的圆的方程为:(x-1)2+(y-2)2=1,
故选B.

点评 本题是基础题,考查圆关于直线对称圆的方程问题,重点在于求出对称圆的圆心坐标和半径,注意垂直、平分的应用是解决对称问题的基本方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.如图,四棱锥S-ABCD中,底面ABCD是边长为4的菱形,∠ABC=60°,SA⊥平面ABCD,且SA=4,M在棱SA上,且AM=1,N在棱SD上且SN=2ND.
(Ⅰ)求证:CN∥面BDM;
(Ⅱ)求三棱锥S-BDM的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.“数列{an}既是等差数列又是等比数列”是“数列{an}是常数列”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若函数f(x)=lnx+ax2-2在区间($\frac{1}{2}$,2)内存在单调递增区间,则实数a的取值范围是(  )
A.(-∞,-2]B.(-$\frac{1}{8}$,+∞)C.(-2,-$\frac{1}{8}$)D.(-2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在空间直角坐标系中,点P(-2,1,4)关于xOy平面对称点的坐标是(  )
A.(-2,1,-4)B.(-2,-1,-4)C.(2,-1,4)D.(2,1,-4)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知空间几何体ABCDEF中,四边形ABCD是正方形,AF⊥平面ABCD,BE⊥平面ABCD,AB=AF=2BE.
(Ⅰ)求证:BD∥平面CEF;
(Ⅱ)求CF与平面ABF所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列命题中,一定正确的是(  )
A.若$a>b,\frac{1}{a}>\frac{1}{b}$,则a>0,b<0B.若a>b,b≠0,则$\frac{a}{b}>1$
C.若a>b,a+c>b+d,则c>dD.若a>b,c>d,则ac>bd

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知抛物线y2=8x的焦点是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{3}$=1(a>0)的右焦点,则双曲线的右准线方程x=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.函数y=($\frac{1}{2}$)${\;}^{{x}^{2}+2x}$的值域为(0,2].

查看答案和解析>>

同步练习册答案