精英家教网 > 高中数学 > 题目详情
精英家教网选修4-1:几何证明选讲
如图,AB为圆O的直径,BE为圆O的切线,点C为圆O上不同于A、B的一点,AD为∠BAC的平分线,且分别与BC交于H,与圆O交于D,与BE交于E,连结BD、CD.
(Ⅰ)求证:∠DBE=∠DBC
(Ⅱ)若EH=BE=a,求AH.
分析:(I)由AD为∠BAC的平分线得
BD
=
CD
,得出∠DBC=∠BCD,再由弦切角定理得到∠DBE=∠BCD,可得∠DBE=∠DBC;
(II)根据AB为圆O的直径得BD⊥AD,在△BEH利用“三线合一”证出BH=BE,结合EH=BE=a,得到△BEH是边长为a的等边三角形,可得∠E=60°.最后在Rt△ABE中利用三角函数的定义算出AE=2BE=2a,从而可得AH=AE-EH=a.
解答:精英家教网解:(I)∵AD为∠BAC的平分线,即∠DAB=∠DAC,
BD
=
CD
,可得∠DBC=∠BCD,
又∵BE与圆O相切于点B,
∴∠DBE=∠BCD,可得∠DBE=∠DBC;
(II)∵AB为圆O的直径,∴BD⊥AD,
又∵△BEH中,∠DBE=∠DBC,BD⊥EH,∴BH=BE,
∵EH=BE=a,∴△BEH是边长为a的等边三角形,可得∠E=60°,
因此Rt△ABE中,cos∠E=
BE
AB
=
1
2
,可得AE=2BE=2a,
∴AH=AE-EH=a.
点评:本题给出圆的直径与切线,求证角相等并求线段的长.着重考查了圆的直径的性质、等腰三角形的判定与性质、圆周角定理与弦切角定理等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网选修4-1:几何证明选讲
如图,圆O的直径AB=10,弦DE⊥AB于点H,HB=2.
(1)求DE的长;
(2)延长ED到P,过P作圆O的切线,切点为C,若PC=2
5
,求PD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网A、选修4-1:几何证明选讲 
如图,PA与⊙O相切于点A,D为PA的中点,
过点D引割线交⊙O于B,C两点,求证:∠DPB=∠DCP.
B.选修4-2:矩阵与变换
已知矩阵M=
12
2x
的一个特征值为3,求另一个特征值及其对应的一个特征向量.
C.选修4-4:坐标系与参数方程
在极坐标系中,圆C的方程为ρ=2
2
sin(θ+
π
4
)
,以极点为坐标原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程为
x=t
y=1+2t
(t为参数),判断直线l和圆C的位置关系.
D.选修4-5:不等式选讲
求函数y=
1-x
+
4+2x
的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-1:几何证明选讲
自圆O外一点P引圆的一条切线PA,切点为A,M为PA的中点,过点M引圆O的割线交该圆于B、C两点,且∠BMP=100°,∠BPC=40°,求∠MPB的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•徐州模拟)选修4-1:几何证明选讲
如图,直线AB经过圆上O的点C,并且OA=OB,CA=CB,圆O交于直线OB于E,D,连接EC,CD,若tan∠CED=
12
,圆O的半径为3,求OA的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•南京二模)选修4-1:几何证明选讲
如图,圆O是等腰三角形ABC的外接圆,AB=AC,延长BC到点D,使得CD=AC,连结AD交圆O于点E,连结BE与AC交于点F,求证:AE2=EF•BE.

查看答案和解析>>

同步练习册答案