精英家教网 > 高中数学 > 题目详情
10.数列{an}满足an+2=2an+1-an,且a2014,a2016是函数f(x)=$\frac{1}{3}{x^3}-4{x^2}$+6x-1的极值点,则log2(a2000+a2012+a2018+a2030)的值是(  )
A.2B.3C.4D.5

分析 利用导数即可得出函数的极值点,再利用等差数列的性质及其对数的运算法则即可得出.

解答 解:函数f(x)=$\frac{1}{3}{x^3}-4{x^2}$+6x-1,可得f′(x)=x2-8x+6,
∵a2014,a2016是函数f(x)=$\frac{1}{3}{x^3}-4{x^2}$+6x-1的极值点,
∴a2014,a2016是方程x2-8x+6=0的两实数根,则a2014+a2016=8.
数列{an}中,满足an+2=2an+1-an
可知{an}为等差数列,
∴a2014+a2016=a2000+a2030,即a2000+a2012+a2018+a2030=16,
从而log2(a2000+a2012+a2018+a2030)=log216=4.
故选:C.

点评 熟练掌握利用导数研究函数的极值、等差数列的性质及其对数的运算法则是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.已知函数f(x)=-x3+ax2-x-1在[0,+∞)上是减函数,则实数a的取值范围是(-$∞,\sqrt{3}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.记函数f(x)=ax2+bx+c(a,b,c均为常数,且a≠0).
(1)若a=1,f(b)=f(c)(b≠c),求f(2)的值;
(2)若b=1,c=-a时,函数y=f(x)在区间[1,2]上的最大值为g(a),求g(a).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.借助计算器,用二分法求函数f(x)=x3-3x-1的一个正的零点(精确到0.1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知a>b>0,且a+b=2,则$\frac{2}{a+3b}+\frac{1}{a-b}$的最小值为$\frac{3+2\sqrt{2}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知集合A={x|-1≤x≤1},则A∩Z={-1,0,1}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.将函数y=sin2x的图象向左平移φ(φ>0)个单位,若所得的图象过点($\frac{π}{6}$,$\frac{\sqrt{3}}{2}$),则φ的最小值为$\frac{π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.抽取某种型号的车床生产的10个零件,编号为A1,A2,…,A10,测量其直径(单位:cm),得到下面数据:
编号A1A2A3A4A5A6A7A8A9A10
直径1.511.491.491.511.491.481.471.531.521.47
其中直径在区间[1.49,1.51]内的零件为一等品.
(1)从上述10个零件中,随机抽取一个,求这个零件为一等品的概率;
(2)从一等品零件中,随机抽取2个.
①用零件的编号列出所有可能的抽取结果;
②求这2个零件直径相等的概率;
(3)若甲、乙分别从一等品中各取一个,求甲取到零件的直径大于乙取到零件的直径的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=x3-3x.
(1)求函数f(x)的极值;
(2)过点P(1,n)(n≠-2)作曲线y=f(x)的切线,问:实数n满足什么样的取值范围,过点P可以作出三条切线?

查看答案和解析>>

同步练习册答案