【题目】已知椭圆的中心为坐标原点,其离心率为,椭圆的一个焦点和抛物线的焦点重合.
(1)求椭圆的方程
(2)过点的动直线交椭圆于、两点,试问:在平面上是否存在一个定点,使得无论如何转动,以为直径的圆恒过点,若存在,说出点的坐标,若不存在,说明理由.
【答案】(1)(2)定点
【解析】
试题分析:(1)先设处椭圆的标准方程,根据离心率求的a和c的关系,进而根据抛物线的焦点求得c,进而求得a,则b可得,进而求的椭圆的标准方程;(2)若直线l与x轴重合,则以AB为直径的圆是,若直线l垂直于x轴,则以AB为直径的圆是.联立两个圆的方程求得其交点的坐标,推断两圆相切,进而可判断因此所求的点T如果存在,只能是这个切点.证明时先看直线l垂直于x轴时,以AB为直径的圆过点T(1,0).再看直线l不垂直于x轴,可设出直线方程,与圆方程联立消去y,记点A ,B ,根据韦达定理求得和的表达式,代入的表达式中,求得,进而推断TA⊥TB,即以AB为直径的圆恒过点T(1,0).
试题解析:(1)抛物线焦点的坐标为,则椭圆的焦点在轴上
设椭圆方程为
由题意可得,,,
∴ 椭圆方程为 ……3分
(2)若直线与轴重合,则以为直径的圆是,
若直线垂直于轴,则以为直径的圆是
由即两圆相切于点 ……5分因此所求的点如果存在,只能是,事实上,点就是所求的点. ……6分
证明:当直线垂直于轴时,以为直径的圆过点,若直线不垂直于轴,
可设直线: 设点,
由, ∴ ……9分
又 , ,
∴
……11分
∴ 即: 故以为直径的圆恒过点.
综上可知:在坐标平面上存在一个定点满足条件. ……12分
科目:高中数学 来源: 题型:
【题目】如图,在三棱柱ABCA1B1C1中, CC1⊥平面ABC, AC⊥BC, AB1的中点为D,B1C∩BC1=E. 求证:
(1)DE∥平面AA1C1C;
(2)AC⊥平面BCC1B1.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,游客从某旅游景区的景点A处下山至C处有两种路径.一种是从A沿直线步行到C,另一种是先从A沿索道乘缆车到B,然后从B沿直线步行到C.现有甲、乙两位游客从A处下山,甲沿AC匀速步行,速度为50m/min.在甲出发2min后,乙从A乘缆车到B,在B处停留1min后,再从B匀速步行到C.假设缆车匀速直线运动的速度为130m/min,山路AC长为1260m,经测量,,.
(Ⅰ)问乙出发多少分钟后,乙在缆车上与甲的距离最短?
(Ⅱ)为使两位游客在处互相等待的时间不超过分钟,乙步行的速度应控制在什么范围内?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点,点是圆上的任意一点,线段的垂直平分线与直线交于点.
(Ⅰ)求点的轨迹方程;
(Ⅱ)若直线与点的轨迹有两个不同的交点和,且原点总在以为直径的圆的内部,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知国家某5A级大型景区对拥挤等级与每日游客数量(单位:百人)的关系有如下规定:当时,拥挤等级为“优”;当时,拥挤等级为“良”;当时,拥挤等级为“拥挤”;当时,拥挤等级为“严重拥挤”。该景区对6月份的游客数量作出如图的统计数据:
(Ⅰ)下面是根据统计数据得到的频率分布表,求出的值,并估计该景区6月份游客人数的平均值(同一组中的数据用该组区间的中点值作代表);
游客数量 (单位:百人) | ||||
天数 | ||||
频率 |
(Ⅱ)某人选择在6月1日至6月5日这5天中任选2天到该景区游玩,求他这2天遇到的游客拥挤等级均为“优”的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】椭圆短轴的左右两个端点分别为A,B,直线与x轴、y轴分别交于两点E,F,交椭圆于两点C,D.
(1)若,求直线的方程;
(2)设直线AD,CB的斜率分别为,若,求k的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设f(x)=si n-2cos2+1.
(1)求f(x)的最小正周期;
(2)若函数y=f(x)与y=g(x)的图象关于直线x=1对称,求当x∈时,y=g(x)的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列满足:对于任意且时,,.
(1)若,求证:为等比数列;
(2)若.
① 求数列的通项公式;
② 是否存在,使得为数列中的项?若存在,求出所有满足条件的的值;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com