精英家教网 > 高中数学 > 题目详情

【题目】为了解某地中小学生的近视形成原因,教育部门委托医疗机构对该地所有中小学生的视力做了一次普查.现该地中小学生人数和普查得到的近视情况分别如图1和图2所示.

(1)求该地中小学生的平均近视率(保留两位有效数字);

(2)为调查中学生用眼卫生习惯,该地用分层抽样的方法从所有初中生和高中生中确定5人进行问卷调查,再从这5人中随机选取2人继续访谈,则此2人全部来自高中年级的概率是多少?

【答案】1;(2

【解析】

1)根据近视率计算近视人数,再除以总人数,即可得答案;

2)根据分层抽样可得高中抽取2名,初中抽取3名,写出试验的所有等可能结果,再利用古典概型的概率公式计算.

1)近视率

2)根据分层抽样的特点,高中取2名,初中取3名,

记高中两名为,初中3名为

则所有等可能结果为

10个,

记事件为“此2人全部来自高中年级”有,共1个,

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数.

1)若,讨论的零点个数;

2)证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年,国家逐步推行全新的高考制度.新高考不再分文理科,某省采用3+3模式,其中语文、数学、外语三科为必考科目,满分各150分,另外考生还要依据想考取的高校及专业的要求,结合自己的兴趣爱好等因素,在思想政治、历史、地理、物理、化学、生物6门科目中自选3门参加考试(63),每科目满分100.为了应对新高考,某高中从高一年级1000名学生(其中男生550人,女生450人)中,采用分层抽样的方法从中抽取名学生进行调查.

1)已知抽取的名学生中含男生55人,求的值;

2)学校计划在高一上学期开设选修中的“物理”和“地理”两个科目,为了了解学生对这两个科目的选课情况,对在(1)的条件下抽取到的名学生进行问卷调查(假定每名学生在这两个科目中必须选择一个科目且只能选择一个科目),下表是根据调查结果得到的列联表. 请将列联表补充完整,并判断是否有 99%的把握认为选择科目与性别有关?说明你的理由;

3)在抽取到的女生中按(2)中的选课情况进行分层抽样,从中抽出9名女生,再从这9名女生中抽取4人,设这4人中选择“地理”的人数为,求的分布列及期望.

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆过点,且其离心率为,过坐标原点作两条互相垂直的射线与椭圆分别相交于两点.

1)求椭圆的方程;

2)是否存在圆心在原点的定圆与直线总相切?若存在,求定圆的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】ABC中,角ABC的对边分别为abc,且2ccosB2a+b

1)求角C的大小;

2)若ABC的面积等于,求ab的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱中,它的体积是底面△ABC中,∠BAC=90°,AB=4AC=3在底面的射影是D,且DBC的中点.

(1)求侧棱与底面ABC所成角的大小;

(2)求异面直线所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】手机运动计步已成为一种时尚,某中学统计了该校教职工一天行走步数(单位:百步),绘制出如下频率分布直方图:

(Ⅰ)求直方图中的值,并由频率分布直方图估计该校教职工一天步行数的中位数;

(Ⅱ)若该校有教职工175人,试估计一天行走步数不大于130百步的人数;

(Ⅲ)在(Ⅱ)的条件下该校从行走步数大于150百步的3组教职工中用分层抽样的方法选取6人参加远足活动,再从6人中选取2人担任领队,求这两人均来自区间的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,轴上关于原点对称的两定点,点满足,点的轨迹为曲线

1)求的方程;

2)过的直线与交于点,线段的中点为的中垂线分别与轴、轴交于点,问是否成立?若成立,求出直线的方程;若不成立,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

1)讨论的单调性;

2)设,若上恒成立,求a的取值范围.

查看答案和解析>>

同步练习册答案