精英家教网 > 高中数学 > 题目详情

已知函数f(x)满足f(2-x)=2-f(x+2),若f-1(4)=8,则f(-4)的值是


  1. A.
    -8
  2. B.
    2
  3. C.
    -2
  4. D.
    8
C
分析:由题意,可将条件变形为f(2-x)+(x+2)=2,即自变量的和为4,函数值的和为2,再由反函数的性质得出f(8)=4,由此可得f(8)+f(-4)=2,由此方程解出f(-4)的值即可选出正确选项.
解答:函数f(x)满足f(2-x)=2-f(x+2),所以有f(2-x)+(x+2)=2,即自变量的和为4,函数值的和为2
又f-1(4)=8,所以有f(8)=4 ①
又-4+8=4,所以有f(8)+f(-4)=2 ②
由①②解得f(-4)=-2
故选C
点评:本题考察反函数及恒成立的等式的运用,解题的关键是对所给的恒等式进行变化,得出结论“自变量的和为4,函数值的和为2”,熟练掌握反函数的性质也是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)满足f(x+y)=f(x)f(y),(x,y∈R)且f(1)=
1
2

(1)若n∈N*时,求f(n)的表达式;
(2)设bn=
nf(n+1)
f(n)
  (n∈N*)
,sn=b1+b2+…+bn,求
1
s1
+
1
s2
+…+
1
sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x) 满足f(x+4)=x3+2,则f-1(1)等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)满足f(x)+f'(0)-e-x=-1,函数g(x)=-λlnf(x)+sinx是区间[-1,1]上的减函数.
(1)当x≥0时,曲线y=f(x)在点M(t,f(t))的切线与x轴、y轴围成的三角形面积为S(t),求S(t)的最大值;
(2)若g(x)<t2+λt+1在x∈[-1,1]时恒成立,求t的取值范围;
(3)设函数h(x)=-lnf(x)-ln(x+m),常数m∈Z,且m>1,试判定函数h(x)在区间[e-m-m,e2m-m]内的零点个数,并作出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)满足:f(p+q)=f(p)f(q),f(1)=3,则
f2(1)+f(2)
f(1)
+
f2(2)+f(4)
f(3)
+
f2(3)+f(6)
f(5)
+
f2(4)+f(8)
f(7)
=
24.
24.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•珠海二模)已知函数f(x)满足:当x≥1时,f(x)=f(x-1);当x<1时,f(x)=2x,则f(log27)=(  )

查看答案和解析>>

同步练习册答案