精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆C: =1(a>b>0)的左焦点为F,直线y=kx(k>0)与椭圆C交于A,B两点,若 ,则C的离心率取值范围为(
A.
B.
C.
D.

【答案】B
【解析】解:设F2是椭圆的右焦点,由AF⊥BF, ∵O点为AB的中点,丨OF丨=丨OF2丨,则四边形AFBF2是平行四边形,
∴四边形AFBF2是矩形.
如图所示设∠ABF=θ,则丨BF丨=2ccosθ,丨BF2丨=丨AF丨=2csinθ,
丨BF丨+丨BF2丨=2a,
∴2ccosθ+2csinθ=2a,
∴e=
sinθ+cosθ= sin(θ+ ),
∵θ∈(0, ],
∴θ+ ∈( ],则sin(θ+ )∈( ),
sin(θ+ )∈(1, ),
∴e∈[ ,1).
故选B.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设F1 , F2是椭圆 (0<b<2)的左、右焦点,过F1的直线l交椭圆于A,B两点,若|AF2|+|BF2|最大值为5,则椭圆的离心率为( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】极坐标系中椭圆C的方程为ρ2= ,以极点为原点,极轴为x轴非负半轴,建立平面直角坐标系,且两坐标系取相同的单位长度.
(1)若椭圆上任一点坐标为P(x,y),求 的取值范围;
(2)若椭圆的两条弦AB,CD交于点Q,且直线AB与CD的倾斜角互补,求证:|QA||QB|=|QC||QD|.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在梯形ABCD中,AB∥CDADDCCB1∠BCD120°,四边形BFED为矩形,平面BFED⊥平面ABCDBF1

1)求证:AD⊥平面BFED

2)已知点P在线段EF上,2.求三棱锥EAPD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为F,过F作平行于x轴的直线交抛物线于A,B两点(AB的左侧),若△AOB的面积为2.

(1)求抛物线C的方程;

(2)P是抛物线C的准线上一点,Q是抛物线上的一点,若PF⊥QF,求证:直线PQ与抛物线相切.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,实数a>0.
(Ⅰ)若a=2时,求函数f(x)的单调区间;
(Ⅱ)若x>0时,不等式f(x)<0恒成立,求实数a的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正实数x,y满足 +2y﹣2=lnx+lny,则xy=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,已知曲线C1y=(x>0)及曲线C2y= (x>0).C1上的点Pn的横坐标为an过C1上的点Pn(n∈N)作直线平行于x轴,交曲线C2于点Qn,再过点Qn作直线平行于y轴,交曲线C1于点Pn+1.

试求an+1与an之间的关系,并证明a2n-1<<a2n(n∈N).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2013年,首都北京经历了59年来雾霾天气最多的一个月.经气象局统计,北京市从1月1日至1月30日的30天里有26天出现雾霾天气,《环境空气质量指数(AQI)技术规定(试行)》将空气质量指数分为六级,其中,中度污染(四级)指数为151~200;重度污染(五级)指数为201~300;严重污染(六级)指数大于300.下面表1是某观测点记录的4天里AQI指数M与当天的空气水平可见度y(千米)的情况,表2是某气象观测点记录的北京1月1日到1月30日AQI指数频数的统计结果.

表1 

AQI指数M

900

700

300

100

空气可见度y/千米

0.5

3.5

6.5

9.5

表2 

AQI指数

[0,200]

(200,400]

(400,600]

(600,800]

(800,1000]

频数

3

6

12

6

3

(1)设变量x=,根据表1的数据,求出y关于x的线性回归方程;

(2)根据表2估计这30天AQI指数的平均值.

查看答案和解析>>

同步练习册答案