精英家教网 > 高中数学 > 题目详情
已知双曲线
x2
a2
-
y2
b2
=1
(a>0,b>0)与抛物线y2=2px(p>0)有相同的焦点F,P,Q是双曲线与抛物线的交点,若PQ经过焦点F,则双曲线
x2
a2
-
y2
b2
=1
(a>0,b>0)的离心率为
2
+1
2
+1
分析:求出抛物线与双曲线的焦点坐标得到p,c的关系;有两条曲线的对称性得到经过两曲线交点的直线垂直于x轴,利用双曲线方程求出交点坐标代入抛物线方程,得到双曲线的三参数a,b,c的关系,求出离心率.
解答:解:由于抛物线的焦点为(
p
2
,0)双曲线的焦点为(c,0)(其中c2=a2+b2),
所以p=2c.
由于双曲线和抛物线的图象都关于x轴对称,故直线PQ垂直于x轴.
所以交点坐标为(c,
b2
a
)在抛物线上,即(
b2
a
)
2
=2pc=4c2,∴
b2
a
=2c

即c2-2ac-a2=0,解得e=
c
a
=1+
2

故答案为:1+
2
点评:本题考查抛物线与双曲线的综合,考查抛物线与双曲线的几何性质,确定几何量之间的关系是关键,属于
中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-
y2
7
=1
,直线l过其左焦点F1,交双曲线的左支于A、B两点,且|AB|=4,F2为双曲线的右焦点,△ABF2的周长为20,则此双曲线的离心率e=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-
y2
b2
=1
的一个焦点与抛物线y2=4x的焦点重合,且该双曲线的离心率为
5
,则该双曲线的渐近线方程为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-
y2
b2
=1(b>a>0)
,O为坐标原点,离心率e=2,点M(
5
3
)
在双曲线上.
(1)求双曲线的方程;
(2)若直线l与双曲线交于P,Q两点,且
OP
OQ
=0
.问:
1
|OP|2
+
1
|OQ|2
是否为定值?若是请求出该定值,若不是请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知直线l:kx-y+1+2k=0(k∈R),则该直线过定点
(-2,1)
(-2,1)

(2)已知双曲线
x2
a2
-
y2
b2
=1的一条渐近线方程为y=
4
3
x,则双曲线的离心率为
5
3
5
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-
y2
b2
=1
(a>0,b>0)满足
a1
b
2
 |=0
,且双曲线的右焦点与抛物线y2=4
3
x
的焦点重合,则该双曲线的方程为
 

查看答案和解析>>

同步练习册答案