精英家教网 > 高中数学 > 题目详情
15.已知函数f(x)=-x2-4x+5.x∈(-3,2],求函数的最大值和最小值,并求出此时x的值.

分析 根据函数f(x)=-x2-4x+5=-(x+2)2+9,x∈(-3,2],再利用二次函数的性质求得它的最值.

解答 解:f(x)=-x2-4x+5=-(x+2)2+9,x∈(-3,2],
当x=-2时,f(x)max=9;
当x=2时,f(x)min=-7.

点评 本题主要考查求二次函数在闭区间上的最值,二次函数的性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.已知tan2α-4=0,且α∈(-$\frac{π}{4}$,$\frac{π}{2}$),则2sin2α-3cos($\frac{π}{2}$+α)•sin($\frac{3π}{2}$-α)的值为$\frac{2}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知a∈R,函数f(x)=x|x-a|,
(1)当a=4时,写出函数y=f(x)的单调递增区间;
(2)当a=4时,求f(x)在区间(1,$\frac{9}{2}$)上最值;
(3)设a≠0,函数f(x)在(m,n)上既有最大值又有最小值,请分别求出m、n的取值范围(用a表示).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若直线(m+3)x+(m2-3)y-2m=0在x轴上的截距是1,则实数m的值等于(  )
A.-1B.1C.-3D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.一直线经过点P(-9,-1)被圆x2+y2+10x+10y+25=0截得的弦长为6,求此弦所在的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.(1+$\frac{1}{2}$x)5的展开式中的第三项的系数为(  )
A.5B.$\frac{5}{2}$C.$\frac{5}{4}$D.$\frac{5}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{2}$=1中,过点P(1,1)的弦被点P平分,则此弦所在的直线方程为(  )
A.x+2y-3=0B.x-2y-3=0C.x+2y+3=0D.x-2y+3=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.数列{an}中,a1∈Z,an+1=an+log2(1-$\frac{1}{n+1}$),则使{an}为整数的n的取值可能是(  )
A.1022B.1023C.1024D.1025

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知函数y=f(x)是奇函数,当x>0时,f(x)=$\sqrt{x}+1$,则当x<0时,f(x)=-$\sqrt{-x}$-1.

查看答案和解析>>

同步练习册答案