【题目】如图,四棱锥中,垂直平面,,,,为的中点.
(Ⅰ) 证明:平面平面;
(Ⅱ)求直线与平面所成角的正弦值.
【答案】(Ⅰ)见证明 (Ⅱ)
【解析】
(Ⅰ)可证 平面,从而得到平面平面.
(Ⅱ)在平面内过作的垂线,垂足为,由(1)可知平面,从而就是所求的线面角,利用解直角三角形可得其正弦值.
(Ⅰ)证明: 平面,平面, 故.
又,所以. 故,即 ,而,所以平面,
因为平面,所以平面平面.
(Ⅱ)平面,平面, 故.又,所以.
在平面内,过点作,垂足为.
由(Ⅰ)知平面平面, 平面,平面平面 所以平面.
由面积法得:即.
又点为的中点,.所以.
又点为的中点,所以点到平面的距离与点到平面的距离相等.
连结交于点,则.
所以点到平面的距离是点到平面的距离的一半,即.
所以直线与平面所成角的正弦值为.
另解:如图,取的中点,如图建立坐标系.
因为,所以.所以有:
,,,,,
.
.,.
设平面的一个法量为,则
取,得 ,.即.
设直线与平面所成角为,则
.
科目:高中数学 来源: 题型:
【题目】已知圆与直线相切,圆心在轴上,且直线被圆截得的弦长为.
(1)求圆的方程;
(2)过点作斜率为的直线与圆交于两点,若直线与的斜率乘积为,且,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线与椭圆相交于两点.
(1)若椭圆的离心率为,焦距为2,求线段的长;
(2)若向量与向量互相垂直(其中为坐标原点),当椭圆的离心率时,求椭圆的长轴长的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】不等式组表示的平面区域为D,的最大值等于8.
(1)求的值;
(2)求的取值范围;
(3)若直线过点P(-3,3),求区域D在直线上的投影的长度的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆的左、右焦点分别为,上顶点为,过点与垂直的直线交轴负半轴于点,且恰是的中点,若过三点的圆恰好与直线相切.
(1)求椭圆的方程;
(2)若直线与椭圆交于两点,在轴上是否存在点,使得以为邻边的平行四边形是菱形?如果存在,求出的值;如果不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,∠ABC=∠BAD=90°,AD=AP=4,AB=BC=2,M为PC的中点点N在线段AD上.
(1)点N为线段AD的中点时,求证:直线PA∥面BMN;
(2)若直线MN与平面PBC所成角的正弦值为,求二面角C﹣BM﹣N所成角θ的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】运输公司年有万辆公交车,计划年投入辆新型号公交车,以后每年投入的新型号公交车数量均比上年增加.
(1)年应投入多少辆新型号公交车?
(2)从年到年间共投入多少辆新型号公交车?
(3)从哪一年开始,该公司新型号公交车总量超过该公司公交车总量的?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com