精英家教网 > 高中数学 > 题目详情
已知双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)的左、右焦点分别为F1,F2,过点F2作双曲线C的一条渐近线的垂线,垂足为H,交双曲线于点M且
F2M
=2
MH
,则双曲线C的离心率为
 
考点:双曲线的简单性质
专题:计算题,平面向量及应用,直线与圆,圆锥曲线的定义、性质与方程
分析:根据题意可表示出渐近线方程,进而可知F2H的斜率,设出H的坐标代入渐近线方程求得x的表达式,则H的坐标可知,进而求得M的表达式,代入双曲线方程整理求得a和c的关系式,进而求得离心率.
解答: 解:设F2(c,0)相应的渐近线:y=
b
a
x,
则根据直线F2H的斜率为-
a
b
,设H(x,
b
a
x),
将y=-
a
b
(x-c)代入双曲线渐近线方程求出x=
a2
c

则H(
a2
c
ab
c
),
F2M
=2
MH
,可得M(
c+2•
a2
c
1+2
2•
ab
c
1+2
),
即有M(
c2+2a2
3c
2ab
3c
),
把M点坐标代入双曲线方程
x2
a2
-
y2
b2
=1,
(c2+2a2)2
9c2a2
-
4a2
9c2
=1,整理可得c=
5
a,
即离心率e=
c
a
=
5

故答案为:
5
点评:本题主要考查了双曲线的简单性质.解题的关键是通过分析题设中的信息,找到双曲线方程中a和c的关系.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

命题p:“?x∈R,x2+1<0”的否定是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

求证:a2+b2-ab≥a+b-1.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足a1+a2+…+an=
n
2
an+1(n∈N*),数列{bn}为等比数列,a1=b1=2,a2=b2
(Ⅰ)求{an}、{bn}的 通项公式.
(Ⅱ)若对每个正整数k,在bk和bk+1之间插入ak个2,得到一个新数列{cn}.设Tn是数列{cn}的前n项和,试求满足Tm=2cm+1的所有正整数m.

查看答案和解析>>

科目:高中数学 来源: 题型:

在棱长为1的正方体内,有两球相外切,并且又分别与正方体相内切.
(1)求两球的半径之和;
(2)当两球的半径是多少时,两球体积之和最小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知tanθ=
1
2
,求θ.

查看答案和解析>>

科目:高中数学 来源: 题型:

在人群流量较大的街道,有一中年人吆喝“送钱”,已知他手拿一黑色小布袋,袋中有3只黄色、3只白色的乒乓球(其体积、质地完成相同),旁边立着一块小黑板写道:
摸球方法:从袋中随机摸出3个球,若摸得同一颜色的3个球,摊主送给摸球者10元钱;若摸得非同一颜色的3个球,摸球者付给摊主2元钱.
(Ⅰ)任意摸球一次,求摸球者获得10元的概率.
(Ⅱ)假定一天中有200人次摸奖,试从概率的角度估算一下这个摊主一个月(按30天计)能赚多少钱?

查看答案和解析>>

科目:高中数学 来源: 题型:

下列函数中,既是偶函数,又在(0,+∞)上是单调减函数的是(  )
A、y=x
1
2
B、y=cosx
C、y=ln|x+1|
D、y=-2|x|

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ax2-x-2a,g(x)=ax+b,其中a,b∈Ra>0.已知f(1)+g(1)+3=0.
(1)求b的值;
(2)设集合A={y|y=f(x),x∈[-2,0]},B={y|y=g(x),x∈[-2,0]}且A∩B≠ϕ试求a的取值范围
(3)是否存在实数a,使得对于任意的正数x,都有f(x)•g(x)≥0?若存在,请求出a的值,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案