精英家教网 > 高中数学 > 题目详情
(2012•泰州二模)在极坐标系中,圆C1的方程为ρ=4
2
cos(θ-
π
4
)
,以极点为坐标原点,极轴为x轴的正半轴建立平面直角坐标系,圆C2的参数方程
x=-1-acosθ
y=-1+asinθ
(θ是参数),若圆C1与圆C2相切,求实数a的值.
分析:圆C1的普通方程是:(x-2)2+(y-2)2=8,圆C2的普通方程为:(x+1)2+(y+1)2=a2.圆C1与圆C2相切,分为外切的内切两种情况讨论,利用圆心距与半径之间的关系建立方程,求实数a的值.
解答:解:圆C1的方程为ρ=4
2
cos(θ-
π
4
)
,的直角坐标方程为:(x-2)2+(y-2)2=8,
圆心C1(2,2),半径r1=2
2

圆C2的参数方程
x=-1-acosθ
y=-1+asinθ
(θ是参数)的直角坐标方程为:(x+1)2+(y+1)2=a2.…(3分)
圆心距C1C2=3
2
,…(5分)
两圆外切时,C1C2=r1+r2=2
2
+|a|=3
2
,a=±
2
; …(7分)
两圆内切时,C1C2=|r1-r2|=|2
2
-|a||=3
2
,a=±5
2

综上,a=±
2
或a=±5
2
.…(10分)
点评:本题考查参数方程化成普通方程、简单曲线的极坐标方程、圆与圆的位置关系及其应用.解题时要认真审题,把极坐标方程合理地转化为普通方程.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•泰州二模)已知角φ的终边经过点P(1,-2),函数f(x)=sin(ωx+φ)(ω>0)图象的相邻两条对称轴之间的距离等于
π
3
,则f(
π
12
)
=
-
10
10
-
10
10

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•泰州二模)若抛物线y2=2px(p>0)上的点A(2,m)到焦点的距离为6,则p=
8
8

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•泰州二模)若动点P在直线l1:x-y-2=0上,动点Q在直线l2:x-y-6=0上,设线段PQ的中点为M(x1,y1),且(x1-2)2+(y1+2)2≤8,则x12+y12的取值范围是
[8,16]
[8,16]

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•泰州二模)如图,三棱柱ABC-A1B1C1中,D、E分别是棱BC、AB的中点,点F在棱CC1上,已知AB=AC,AA1=3,BC=CF=2.
(1)求证:C1E∥平面ADF;
(2)若点M在棱BB1上,当BM为何值时,平面CAM⊥平面ADF?

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•泰州二模)已知z=(a-i)(1+i)(a∈R,i为虚数单位),若复数z在复平面内对应的点在实轴上,则a=
1
1

查看答案和解析>>

同步练习册答案