精英家教网 > 高中数学 > 题目详情
2.已知直线l的方向向量$\overrightarrow a=(1,1,0)$,平面α的一个法向量为$\overrightarrow n=(1,1,-\sqrt{6})$,则直线l与平面α所成的角为(  )
A.120°B.60°C.30°D.150°

分析 利用面积向量的数量积,直接求解直线l与平面α所成的角的正弦值即可得出结果.

解答 解:直线l的方向向量$\overrightarrow a=(1,1,0)$,平面α的一个法向量为$\overrightarrow n=(1,1,-\sqrt{6})$,
直线l与平面α所成的角的正弦值=|cos<$\overrightarrow{a}$,$\overrightarrow{n}$>|=$|\frac{\overrightarrow{a}•\overrightarrow{n}}{|\overrightarrow{a}||\overrightarrow{n}|}|$=$|\frac{2}{\sqrt{2}•\sqrt{1+1+6}}|$=$\frac{1}{2}$.
直线l与平面α所成的角为:30°.
故选:C.

点评 本题考查了线面几角的计算公式、向量夹角公式、数量积运算性质,考查了计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.设F1,F2分别是椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的左右焦点,M是椭圆C上一点,且直线MF2与x轴垂直,直线MF1与C的另一个交点为N.
(1)若直线MN的斜率为$\frac{3}{4}$,求C的离心率;
(2)若直线MN在y轴上的截距为2,且MN=5F1N,求椭圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设函数f(x)=(x+b)lnx,g(x)=alnx+$\frac{1-a}{2}{x^2}$-x(a≠1),已知曲线y=f(x)在点(1,f(1))处的切线与直线x+2y=0垂直.
(1)求b的值;
(2)若对任意x≥1,都有g(x)>$\frac{a}{a-1}$,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆长轴长为4,焦点 F1(-1,0),F2(1,0),求椭圆标准方程和离心率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知f(α)=sinα•cosα.
(1)若f(α)=$\frac{1}{8}$,且$\frac{π}{4}$<α<$\frac{π}{2}$,求cosα-sinα的值;
(2)若α=-$\frac{31π}{3}$,求f(α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知椭圆x2+(m+3)y2=m,(m>0)的离心率$e=\frac{{\sqrt{3}}}{2}$,求m的值及椭圆长轴、焦点坐标、顶点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.对于给定的直线l和平面a,在平面a内总存在直线m与直线l(  )
A.平行B.相交C.垂直D.异面

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,已知棱长为4的正方体ABCD-A1B1C1D1中,M,N,E,F分别是棱A1D1,A1B1,D1C1,B1C1的中点,求证:平面AMN∥平面EFBD.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.将45(6)改写成十进制数为29(10)

查看答案和解析>>

同步练习册答案