【题目】已知函数,m∈R
(1)讨论f(x)的单调性;
(2)若m∈(-1,0),证明:对任意的x1,x2∈[1,1-m],4f(x1)+x2<5.
【答案】(1)见解析;(2)见解析
【解析】
(1)求函数的导数,结合函数单调性和导数之间的关系进行判断即可.
(2)将不等式进行转化,构造函数g(x)=-x+,则不等式转化为最值问题进行求解即可.
解:(1)
①当1>1-m,即m>0时,(-∞,1-m)和(1,+∞)上f′(x)<0,f(x)单调减;(1-m,1)上f′(x)>0,f(x)单调增
②当1=1-m,即m=0时,(-∞,+∞)上f′(x)<0,f(x)单调减
③当1<1-m,即m<0时,(-∞,1)和(1-m,+∞)上f′(x)<0,f(x)单调减;(1,1-m)上f′(x)>0,f(x)单调增
(2)对任意的x1,x2∈[1,1-m],4f(x1)+x2<5可转化为,
设g(x)=-x+,则问题等价于x1,x2∈[1,1-m],f(x)max<g(x)min
由(1)知,当m∈(-1,0)时,f(x)在[1,1-m]上单调递增,,
g(x)在[1,1-m]上单调递减,,
即证,化简得4(2-m)<e1-m[5-(1-m)]
令1-m=t,t∈(1,2)
设h(t)=et(5-t)-4(t+1),t∈(1,2),
h′(t)=et(4-t)-4>2et-4>0,故h(t)在(1,2)上单调递增.
∴h(t)>h(1)=4e-8>0,即4(2-m)<e1-m[5-(1-m)]
故,得证.
科目:高中数学 来源: 题型:
【题目】(1)把本不同的书分给位学生,每人至少一本,有多少种方法?
(2)由这个数字组成没有重复数字的四位偶数由多少个?
(3)某旅行社有导游人,其中人只会英语,人只会日语,其余人既会英语,也会日语,现从中选人,其中人进行英语导游,另外人进行日语导游,则不同的选择方法有多少种?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知,若直线于点,点是直线上的一动点,是线段的中点,且,设点的轨迹为曲线.
(1)求曲线的方程;
(2)过点作直线交于点,交轴于点,过作直线,交于点.试判断是否为定值?若是,求出其定值;若不是,请说明理由
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,是椭圆上的两个不同点.
(1)若,且点所在直线方程为,求的值;
(2)若直线的斜率之积为,线段上有一点满足,连接并廷长交椭圆于点,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校为了推动数学教学方法的改革,学校将高一年级部分生源情况基本相同的学生分成甲、乙两个班,每班各人,甲班按原有模式教学,乙班实施教学方法改革,经过一年的教学,将甲、乙两个班学生一年来的数学成绩取整数,绘制成如下茎叶图,规定不低于分(百分制)为优秀,甲班同学成绩的中位数为.
(1)求的值和乙班同学成绩的众数;
(2)完成表格,若有以上的把握认为“数学成绩优秀与教学改革有关”的话,那么学校将扩大教学改革面,请问学校是否要扩大教学改革面?说明理由.
甲班 | 乙班 | 合计 | |
优秀人数 | |||
不优秀人数 | |||
合计 |
附:,其中.
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.001 | ||
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“搜索指数”是网民通过搜索引擎,以每天搜索关键词的次数为基础所得到的统计指标.“搜索指数”越大,表示网民对该关键词的搜索次数越多,对该关键词相关的信息关注度也越高.下图是2017年9月到2018年2月这半年中,某个关键词的搜索指数变化的走势图.
根据该走势图,下列结论正确的是( )
A. 这半年中,网民对该关键词相关的信息关注度呈周期性变化
B. 这半年中,网民对该关键词相关的信息关注度不断减弱
C. 从网民对该关键词的搜索指数来看,去年10月份的方差小于11月份的方差
D. 从网民对该关键词的搜索指数来看,去年12月份的平均值大于今年1月份的平均值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】程大位《算法统宗》里有诗云“九百九十六斤棉,赠分八子做盘缠.次第每人多十七,要将第八数来言.务要分明依次弟,孝和休惹外人传.”意为:996斤棉花,分别赠送给8个子女做旅费,从第一个开始,以后每人依次多17斤,直到第八个孩子为止.分配时一定要等级分明,使孝顺子女的美德外传,则第八个孩子分得斤数为( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙两位同学学生参加数学竞赛培训,在培训期间他们参加5项预赛,成绩如下:
甲:78 76 74 90 82
乙:90 70 75 85 80
(Ⅰ)用茎叶图表示这两组数据;
(Ⅱ)现要从中选派一人参加数学竞赛,从平均数、方差的角度考虑,你认为选派哪位学生参加合适?说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com