精英家教网 > 高中数学 > 题目详情
如图所示,在边长为的正方形中,点在线段上,且,作//,分别交于点,作//,分别交于点,将该正方形沿折叠,使得重合,构成如图所示的三棱柱
(1)求证:平面; 
(2)若点E为四边形BCQP内一动点,且二面角E-AP-Q的余弦值为,求|BE|的最小值.
(1)参考解析;(2)

试题分析:(1)依题意可得.即翻折后的.所以由.可得.又因为,所以可得:平面.
(2)依题意建立空间直角坐标系,由平面APQ写出其法向量.假设点E(m,n,0),根据平面APE写出其法向量.再由二面角E-AP-Q的余弦值为,可得到关于m,n的方程m+2n-6=0.再由点B到直线的距离公式即可得到结论.
(1)在正方形中,因为
所以三棱柱的底面三角形的边
因为,所以,所以
因为四边形为正方形,,所以,而
所以平面.----------- 4分
(2)因为,,两两互相垂直.以为原点,建立如图所示的空间直角坐标系


所以
设平面的一个法向量为
则由,即
.所以
设点E(m,n,0),
.由得:m+2n-6=0
所以|BE|的最小值为点B到线段: m+2n-6="0" 的距离------- 13分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,所在平面互相垂直,且,E、F分别为AC、DC的中点.
(1)求证:
(2)求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,棱柱ABCD-A1B1C1D1的所有棱长都等于2,∠ABC=60°,平面AA1C1C⊥平面ABCD,∠A1AC=60°.

(1)证明:BD⊥AA1
(2)求锐二面角D-A1A-C的平面角的余弦值;
(3)在直线CC1上是否存在点P,使BP∥平面DA1C1?若存在,求出点P的位置;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知四边形ABCD满足,E是BC的中点,将△BAE沿AE翻折成,F为的中点.
(1)求四棱锥的体积;
(2)证明:
(3)求面所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在棱长为1的正方体ABCD-A1B1C1D1中,点E是棱AB上的动点.

(1)求证:DA1ED1
(2)若直线DA1与平面CED1成角为45o,求的值;
(3)写出点E到直线D1C距离的最大值及此时点E的位置(结论不要求证明).

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知点Q是点P(3,4,5)在平面xOy上的射影,则线段PQ的长等于______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图所示,在正方体ABCD-A1B1C1D1

中,O是底面正方形ABCD的中心,M是D1D的中点,N是A1B1上的动点,则直线NO、AM的位置关系是(  )
A.平行B.相交
C.异面垂直D.异面不垂直

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱柱中,底面.四边形为梯形,,且.过三点的平面记为的交点为.
(1)证明:的中点;
(2)求此四棱柱被平面所分成上下两部分的体积之比;
(3)若,梯形的面积为6,求平面与底面所成二面角大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,直三棱柱的底面是等腰直角三角形,,侧棱底面,且的中点,上的点.
(1)求异面直线所成角的大小(结果用反三角函数表示);
(2)若,求线段的长.

查看答案和解析>>

同步练习册答案