精英家教网 > 高中数学 > 题目详情
19.数列{an}的通项公式为an=(2n+1)•3n-1,则{an}的前7项和S7为(  )
A.36B.7×37C.-7×37D.14×37

分析 通过Sn=3•1+5•3+7•32+…+(2n+1)•3n-1与3Sn=3•3+5•32+…+(2n-1)•3n-1+(2n+1)•3n错位相减、计算即得结论.

解答 解:记数列{an}的前n项和为Sn,则Sn=3•1+5•3+7•32+…+(2n+1)•3n-1
3Sn=3•3+5•32+…+(2n-1)•3n-1+(2n+1)•3n
两式错位相减得:-2Sn=3+2(3+32+…+3n-1)-(2n+1)•3n
=3+2•$\frac{3(1-{3}^{n-1})}{1-3}$-(2n+1)•3n
=-2n•3n
∴Sn=n•3n
∴S7=7•37
故选:B.

点评 本题考查数列的通项,利用错位相减法是解决本题的关键,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.(1)若以连续抛两次骰子分别得到的点数m,n分别作为点P的横坐标和纵坐标,求点P落在圆x2+y2=16内的概率;
(2)已知函数f(x)=ax2+bx-1,a,b∈[0,4],求f(1)>0且f(-1)<0成立的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,四棱锥P-ABCD的底面ABCD为一直角梯形,其中BA⊥AD,CD⊥AD,CD=AD=2AB=2,PA⊥底面ABCD,E是PC的中点.
(1)证明:直线BE∥平面PAD;
(2)若直线BE⊥平面PCD.
①求PA的长;
②求异面直线PD与BC所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,AB是圆O的直径,弦CD⊥AB于点M,E是CD延长线上一点,AB=10,CD=8,3ED=4OM,EF切圆O于F,BF交CD于G.
(1)求证:△EFG为等腰三角形;
(2)求线段MG的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知数列{an}的前n项的乘积为Tn=3${\;}^{{n}^{2}}$(n∈N*),则数列{an}的前n项的和为(  )
A.$\frac{3}{2}$(3n-1)B.$\frac{9}{2}$(3n-1)C.$\frac{3}{8}$(9n-1)D.$\frac{9}{8}$(9n-1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知an=ln(1+$\frac{1}{n}$)(n∈N*),则数列{an}的前n项和为Sn=ln(n+1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在数列{an}中,a1=1,an=2an-1+3•2n-2,求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.己知抛物线x2=2ay(a为常数)的准线经过点(1,-1),则抛物线的焦点坐标为(  )
A.(-1,0)B.(1,0)C.(0,-1)D.(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.圆C:x2+y2=1,直线l:y=kx+2,直线l与圆C交与A,B,若|$\overrightarrow{OA}$$+\overrightarrow{OB}$|<|$\overrightarrow{OA}$$-\overrightarrow{OB}$|(其中O为坐标原点),则k的取值范围是(  )
A.(0,$\sqrt{7}$)B.(-$\sqrt{7}$,$\sqrt{7}$)C.($\sqrt{7}$,+∞)D.($-∞,-\sqrt{7}$)$∪(\sqrt{7,}+∞)$

查看答案和解析>>

同步练习册答案