精英家教网 > 高中数学 > 题目详情

设圆C过点A(1,2),B(3,4),且在x轴上截得的弦长为6,求圆C的方程.

解:设所求圆C的方程为x2+y2+Dx+Ey+F=0,过点A(1,2),B(3,4),得:
D+2E+F=-5,3D+4E+F=-25,
令y=0,x2+Dx+F=0,|x1-x2|==6,解得:D=12,E=-22,F=27或D=-8,E=-2,F=7,
故所求圆C的方程为x2+y2+12x-22y+27=0或x2+y2-8x-2y+7=0.
分析:设所求圆C的方程为x2+y2+Dx+Ey+F=0,由圆经过点A(1,2),B(3,4),可得系数的方程组,再令y=0,利用在x轴上截得的弦长,由此求得D,E,F的值,从而求得圆的一般方程.
点评:本题主要考查求圆的一般方程的方法,直线和圆相交的性质,弦长公式的应用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知动点P(x,y)(y≥0)到定点F(0,1)的距离和它到直线y=-1的距离相等,记点P的轨迹为曲线C.
(1)求曲线C的方程;
(2)设圆M过点A(0,2),且圆心M(a,b)在曲线C上,若圆M与x轴的交点分别为E(x1,0)、G(x2,0),求线段EG的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C经过点A(1,2)、B(3,0),并且直线m:2x-3y=0平分圆C.
(1)求圆C的方程;
(2)过点D(0,3),且斜率为k的直线l与圆C有两个不同的交点E、F,若|EF|≥2
3
,求k的取值范围;
(3)若圆C关于点(
3
2
,1)
对称的曲线为圆Q,设M(x1,y1)、P(x2,y2)(x1≠±x2)是圆Q上的两个动点,点M关于原点的对称点为M1,点M关于x轴的对称点为M2,如果直线PM1、PM2与y轴分别交于(0,m)和(0,n),问m•n是否为定值?若是求出该定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设圆C过点A(1,2),B(3,4),且在x轴上截得的弦长为6,求圆C的方程.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年山东省聊城市某重点中学高二(上)期末数学试卷(文科)(解析版) 题型:解答题

设圆C过点A(1,2),B(3,4),且在x轴上截得的弦长为6,求圆C的方程.

查看答案和解析>>

同步练习册答案