【题目】某科研课题组通过一款手机APP软件,调查了某市1000名跑步爱好者平均每周的跑步量(简称“周跑量”),得到如下的频数分布表
周跑量(km/周) | |||||||||
人数 | 100 | 120 | 130 | 180 | 220 | 150 | 60 | 30 | 10 |
(1)在答题卡上补全该市1000名跑步爱好者周跑量的频率分布直方图:
注:请先用铅笔画,确定后再用黑色水笔描黑
(2)根据以上图表数据计算得样本的平均数为,试求样本的中位数(保留一位小数),并用平均数、中位数等数字特征估计该市跑步爱好者周跑量的分布特点
(3)根据跑步爱好者的周跑量,将跑步爱好者分成以下三类,不同类别的跑者购买的装备的价格不一样,如下表:
周跑量 | 小于20公里 | 20公里到40公里 | 不小于40公里 |
类别 | 休闲跑者 | 核心跑者 | 精英跑者 |
装备价格(单位:元) | 2500 | 4000 | 4500 |
根据以上数据,估计该市每位跑步爱好者购买装备,平均需要花费多少元?
【答案】(1)见解析;(2) 中位数为29.2,分布特点见解析; (3)3720元
【解析】
(1)根据频数和频率之间的关系计算,即可得到答案;
(2)根据频率分布直方图利用中位数两边频率相等,列方程求出中位数的值,进而得出结论;
(3)根据频率分布直方图求出休闲跑者,核心跑者,精英跑者分别人数,进而求出平均值.
(1)补全该市1000名跑步爱好者周跑量的频率分布直方图,如下:
(2)中位数的估计值:
由,
所以中位数位于区间中,
设中位数为,则,
解得,因为,
所以估计该市跑步爱好者多数人的周跑量多于样本的平均数.
(3)依题意可知,休闲跑者共有人,
核心跑者人,
精英跑者人,
所以该市每位跑步爱好者购买装备,平均需要元.
科目:高中数学 来源: 题型:
【题目】李克强总理在2018年政府工作报告指出,要加快建设创新型国家,把握世界新一轮科技革命和产业变革大势,深入实施创新驱动发展战略,不断增强经济创新力和竞争力.某手机生产企业积极响应政府号召,大力研发新产品,争创世界名牌.为了对研发的一批最新款手机进行合理定价,将该款手机按事先拟定的价格进行试销,得到一组销售数据,如表所示:
单价(千元) | ||||||
销量(百件) |
已知.
(1)若变量具有线性相关关系,求产品销量(百件)关于试销单价(千元)的线性回归方程;
(2)用(1)中所求的线性回归方程得到与对应的产品销量的估计值.
(参考公式:线性回归方程中的估计值分别为)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】正方体ABCD﹣A1B1C1D1的棱长为1,点E,F分别是棱D1C1 , B1C1的中点,过E,F作一平面α,使得平面α∥平面AB1D1 , 则平面α截正方体的表面所得平面图形为( )
A.三角形
B.四边形
C.五边形
D.六边形
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,椭圆 的离心率为 ,顶点为A1、A2、B1、B2 , 且 .
(1)求椭圆C的方程;
(2)P是椭圆C上除顶点外的任意点,直线B2P交x轴于点Q,直线A1B2交A2P于点E.设A2P的斜率为k,EQ的斜率为m,试问2m﹣k是否为定值?并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市教育部门为了解全市高三学生的身高发育情况,从本市全体高三学生中随机抽取了100人的身高数据进行统计分析.经数据处理后,得到了如下图1所示的频事分布直方图,并发现这100名学生中,身高不低于1.69米的学生只有16名,其身高茎叶图如下图2所示,用样本的身高频率估计该市高一学生的身高概率.
(1)求该市高三学生身高高于1.70米的概率,并求图1中、、的值.
(2)若从该市高三学生中随机选取3名学生,记为身高在的学生人数,求的分布列和数学期望;
(3)若变量满足且,则称变量满足近似于正态分布的概率分布.如果该市高三学生的身高满足近似于正态分布的概率分布,则认为该市高三学生的身高发育总体是正常的.试判断该市高三学生的身高发育总体是否正常,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某射手射击1次,击中目标的概率是0.9,他连续射击4次,且他各次射击是否击中目标相互之间没有影响.有下列结论:
①他第3次击中目标的概率是0.9; ②他恰好击中目标3次的概率是0.93×0.1;
③他至少击中目标1次的概率是1-0.14 ④他恰好有连续2次击中目标的概率为3×0.93×0.1
其中正确结论的序号是______
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某高校在2012年的自主招生考试成绩中随机抽取名中学生的笔试成绩,按成绩分组,得到的频率分布表如表所示.
组号 | 分组 | 频数 | 频率 |
第1组 | 5 | ||
第2组 | ① | ||
第3组 | 30 | ② | |
第4组 | 20 | ||
第5组 | 10 |
(1)请先求出频率分布表中位置的相应数据,再完成频率分布直方图;
(2)为了能选拔出最优秀的学生,高校决定在笔试成绩高的第组中用分层抽样抽取名学生进入第二轮面试,求第3、4、5组每组各抽取多少名学生进入第二轮面试;
(3)在(2)的前提下,学校决定在名学生中随机抽取名学生接受考官进行面试,求:第组至少有一名学生被考官面试的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com