精英家教网 > 高中数学 > 题目详情

【题目】如图,在直三棱柱ABCA1B1C1中,ABACAB2AC4AA12λ.

1)若λ1,求直线DB1与平面A1C1D所成角的正弦值;

2)若二面角B1- A1C1-D的大小为60°,求实数λ的值.

【答案】12

【解析】

1)先根据题意建立空间直角坐标系,求得向量的坐标和平面A1C1D的一个法向量,再利用线面角的向量方法求解.

2D(xy0),根据λ,得到D(0),表示(040)(,-2),求得平面A1C1D的一个法向量,又易知平面A1B1C1的一个法向量,再根据二面角B1- A1C1-D的大小为60°,由|cosn1n2|求解.

1)分别以ABACAA1所在直线为xyz轴建立空间直角坐标系.

A(000)B(200)C(040)A1(002)B1(202)C1(042)

λ1时,DBC的中点,

所以D(120)(1,-22)(040)(12,-2)

设平面A1C1D的法向量为n1(x,y,z)

所以取n1(201)

cosn1〉=

所以DB1与平面A1C1D所成角的正弦值为

2)因为λ

D(xy0),所以(x2y0)(x4y0)

所以x2=-λxyλ(4y)

xy.

所以D(0)

所以(040)(,-2)

设平面A1C1D的法向量为n1(x,y,z)

所以取n1(λ101)

又平面A1B1C1的一个法向量为n2(001)

由题意得|cosn1n2|

所以

解得λ1λ=-1(不合题意,舍去)

所以实数λ的值为1

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】现代足球运动是世上开展得最广泛、影响最大的运动项目,有人称它为世界第一运动.早在2000多年前的春秋战国时代,就有了一种球类游戏蹴鞠,后来经过阿拉伯人传到欧洲,发展成现代足球.18631026日,英国人在伦敦成立了世界上第一个足球运动组织——英国足球协会,并统一了足球规则.人们称这一天是现代足球的诞生日.如图所示,足球表面是由若干黑色正五边形和白色正六边形皮围成的,我们把这些正五边形和正六边形都称为足球的面,任何相邻两个面的公共边叫做足球的棱.已知足球表面中的正六边形的面为20个,则该足球表面中的正五边形的面为______个,该足球表面的棱为______条.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知三棱柱中,平面平面.

1)证明:

2)设,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知多面体ABCA1B1C1A1AB1BC1C均垂直于平面ABCABC=120°,A1A=4,C1C=1,AB=BC=B1B=2.

Ⅰ)证明:AB1⊥平面A1B1C1

求直线AC1与平面ABB1所成的角的正弦值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在棱长为3的正方体ABCD-A1B1C1D1中,A1ECF1.

1)求两条异面直线AC1BE所成角的余弦值;

2)求直线BB1与平面BED1F所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知矩形ABCD所在平面垂直直角梯形ABPE所在的平面于直线AB,且ABBP2ADAE1AEAB,且AEBP.

1)求平面PCD与平面ABPE所成的二面角的余弦值;

2)在线段PD上是否存在一点N,使得直线BN与平面PCD所成角的正弦值等于?若存在,试确定点N的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某居民小区为缓解业主停车难的问题,拟对小区内一块扇形空地进行改建.如图所示,平行四边形区域为停车场,其余部分建成绿地,点在围墙弧上,点和点分别在道路和道路上,且米,,设

(1)求停车场面积关于的函数关系式,并指出的取值范围;

(2)当为何值时,停车场面积最大,并求出最大值(精确到平方米).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,多面体是正三棱柱(底面是正三角形的直棱柱)沿平面切除一部分所得,其中平面为原正三棱柱的底面,,点D的中点.

(1)求证:平面

(2)求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着银行业的不断发展,市场竞争越来越激烈,顾客对银行服务质量的要求越来越高,银行为了提高柜员员工的服务意识,加强评价管理,工作中让顾客对服务作出评价,评价分为满意、基本满意、不满意三种.某银行为了比较顾客对男女柜员员工满意度评价的差异,在下属的四个分行中随机抽出40人(男女各半)进行分析比较.对40人一月中的顾客评价“不满意”的次数进行了统计,按男、女分为两组,再将每组柜员员工的月“不满意”次数分为5组:,得到如下频数分布表.

分组

女柜员

2

3

8

5

2

男柜员

1

3

9

4

3

1)在答题卡所给的坐标系中分别画出男、女柜员员工的频率分布直方图;分别求出男、女柜员员工的月平均“不满意”次数的估计值,试根据估计值比较男、女柜员员工的满意度谁高?

2)在抽取的40名柜员员工中:从“不满意”次数不少于20的员工中随机抽取3人,并用X表示随机抽取的3人中女柜员工的人数,求X的分布列和数学期望.

查看答案和解析>>

同步练习册答案