精英家教网 > 高中数学 > 题目详情
设△ABC是锐角三角形,a、b、c分别是内角A、B、C所对边长,已知向量,若
(1)求角A的值
(2)若,求三角形面积S△ABC
【答案】分析:(l)利用向量的垂直,数量积为0,通过两角和与差的三角函数以及平方差公式,化简表达式直接求出A的正弦函数值,求出A即可.
(2)通过余弦定理求出b,c的大小,然后利用三角形的面积公式求解即可.
解答:解:(1)因为
所以=0,
+sin2B-sin2A=0

sinA=,因为△ABC是锐角三角形,A、B、C是内角,
所以sinA=,A=
(2)由(1)可知A=,又
所以a2=b2+c2-2bccosA,
27=3c2,所以c=3,b=6,
所以三角形的面积为:S△ABC===
点评:本题考查向量的数量积公式的应用,余弦定理以及三角形的面积的求法,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设△ABC是锐角三角形,a,b,c分别是内角A,B,C所对边长,并且sin2A=sin(
π
3
+B)sin(
π
3
-B)+sin2B

(Ⅰ)求角A的值;
(Ⅱ)若
AB
AC
=12,a=2
7
,求b,c(其中b<c).

查看答案和解析>>

科目:高中数学 来源: 题型:

设△ABC是锐角三角形,a、b、c分别是内角A、B、C所对边长,已知向量
m
=(sin(
π
3
+B),sinB-sinA),
n
=(sin(
π
3
-B),sinB+sinA)
,若
m
n

(1)求角A的值
(2)若a=3
3
,b=2c
,求三角形面积S△ABC

查看答案和解析>>

科目:高中数学 来源: 题型:

设△ABC是锐角三角形,角A,B,C所对的边分别是a,b,c,并且cos2A=cos2B-sin(
π
3
+B)cos(
π
6
+B)

(1)求角A的值;
(2)若△ABC的面积为6
3
,求边a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设△ABC是锐角三角形,a,b,c分别是内角A,B,C所对边长,并且sin2A=sin(
π
3
+B)sin(
π
3
-B)+sin2B

(1)求角A的值;
(2)若
AB
AC
=12,a=2
7
,求b2+c2(其中b<c)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•临沂二模)设△ABC是锐角三角形,a、b、c分别是内角A、B、C的对边长,向量m=(2sin(A+C),-
3
),n=(cos2B,2cos2
B
2
-1),且向量m,n共线.
(I)求角B的大小;
(II)若
BA
BC
=12
,B=2
7
,求a,c(其中a<c)

查看答案和解析>>

同步练习册答案