精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的离心率,且椭圆过点.

(1)求椭圆的标准方程;

(2)设直线交于两点,点上,是坐标原点,若,判断四边形的面积是否为定值?若为定值,求出该定值;如果不是,请说明理由.

【答案】(1) (2)见解析

【解析】

(1)根据离心率和椭圆经过的点的坐标,建立方程组求解椭圆的方程;(2)写出四边形的面积表达式,结合表达式的特征进行判断.

解:(1)因为椭圆的离心率,所以,即.

因为点在椭圆上,所以.

解得.

所以椭圆的标准方程为.

(2)当直线的斜率不存在时,直线的方程为,此时四边形的面积为.

当直线的斜率存在时,设直线的方程是

联立方程组,消去,得

.

到直线的距离是.

,得.

因为点在曲线上,所以有,整理得.

由题意,四边形为平行四边形,所以四边形的面积为

.

,得,故四边形的面积是定值,其定值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某大城市一家餐饮企业为了了解外卖情况,统计了某个送外卖小哥某天从9:00到21:00这个时间段送的50单外卖.以2小时为一时间段将时间分成六段,各时间段内外卖小哥平均每单的收入情况如下表,各时间段内送外卖的单数的频率分布直方图如下图.

时间区间

每单收入(元)

6

5.5

6

6.4

5.5

6.5

(Ⅰ)求频率分布直方图中的值,并求这个外卖小哥送这50单获得的收入;

(Ⅱ)在这个外卖小哥送出的50单外卖中男性订了25单,且男性订的外卖中有20单带饮品,女性订的外卖中有10单带饮品,请完成下面的列联表,并回答是否有的把握认为“带饮品和男女性别有关”?

带饮品

不带饮品

总计

总计

附:

0.050

0.010

0.005

0.001

3.841

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】记无穷数列的前项中最大值为,最小值为,令

(1)若,写出的值;

(2)设,若,求的值及时数列的前项和

(3)求证:“数列是等差数列”的充要条件是“数列是等差数列”.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中,平面平面,底面为矩形,分别为线段上一点,且.

(1)证明:

(2)证明:平面,并求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线C:(a>0,b>0)的渐近线方程为y=±x,右顶点为(1,0).

(1)求双曲线C的方程;

(2)已知直线y=x+m与双曲线C交于不同的两点A,B,且线段AB的中点为,当x0≠0时,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=2,AB//DC,AB=2CD,∠BCD=90°.

(1)求证:AD⊥PB;

(2)求点C到平面PAB的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】七巧板是古代中国劳动人民发明的一种中国传统智力玩具,它由五块等腰直角三角形,一块正方形和一块平行四边形共七块板组成.清陆以湉《冷庐杂识》卷一中写道:近又有七巧图,其式五,其数七,其变化之式多至千余.体物肖形,随手变幻,盖游戏之具,足以排闷破寂,故世俗皆喜为之.如图是一个用七巧板拼成的正方形,若在此正方形中任取一点,则此点取自阴影部分的概率为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-4:坐标系与参数方程]

在平面直角坐标系中,以为极点,轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为;直线的参数方程为(t为参数).直线与曲线分别交于两点.

(1)写出曲线的直角坐标方程和直线的普通方程;

(2)若点的极坐标为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,在矩形中,,点分别在线段上,且,现将沿折到的位置,连结,如图2

1)证明:

2)记平面与平面的交线为.若二面角,求与平面所成角的正弦值.

查看答案和解析>>

同步练习册答案