精英家教网 > 高中数学 > 题目详情

【题目】已知 =(2cosx,sinx﹣cosx), =( sinx,sinx+cosx),记函数f(x)= . (Ⅰ)求f(x)的表达式,以及f(x)取最大值时x的取值集合;
(Ⅱ)设△ABC三内角A,B,C的对应边分别为a,b,c,若a+b=2 ,c= ,f(C)=2,求△ABC的面积.

【答案】解:(Ⅰ)f(x)= =2 sinxcosx+sin2x﹣cos2x= sin2x﹣cos2x=2sin(2x﹣ ), 当2x﹣ =2kπ+ (k∈Z)时,f(x)max=2,
对应x的集合为{x|x=kπ+ ,k∈Z}.
(Ⅱ)由f(C)=2,得2sin(2C﹣ )=1,
∵0<C<π,∴﹣ <2C﹣ ,∴2C﹣ = ,解得C=
又∵a+b=2 ,c= ,由余弦定理得c2=a2+b2﹣ab,
∴12﹣3ab=6,即ab=2,…
由面积公式得△ABC面积为SABC= =
【解析】(Ⅰ)f(x)= =2 sinxcosx+sin2x﹣cos2x= sin2x﹣cos2x=2sin(2x﹣ ),利用三角函数的性质,即可求出f(x)取最大值时x的取值集合;(Ⅱ)先求出C,再求出△ABC的面积.
【考点精析】解答此题的关键在于理解正弦定理的定义的相关知识,掌握正弦定理:,以及对余弦定理的定义的理解,了解余弦定理:;;

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】直线l经过两点(2,1),(6,3).
(1)求直线l的方程;
(2)圆C的圆心在直线l上,并且与x轴相切于(2,0)点,求圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某省每年损失耕地20万亩,每亩耕地价值24000元,为了减少耕地损失,决定按耕地价格的t%征收耕地占用税,这样每年的耕地损失可减少 t万亩,为了既可减少耕地的损失又保证此项税收一年不少于9000万元,则t的取值范围是(
A.[1,3]
B.[3,5]
C.[5,7]
D.[7,9]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在四棱锥P﹣ABCD中,PD⊥平面ABCD,底面ABCD是正方形,PD=AB=2,E为PC中点.求二面角E﹣BD﹣P的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆E: =1(a>b>0)的离心率为 ,右焦点为F,椭圆与y轴的正半轴交于点B,且|BF|=
(1)求椭圆E的方程;
(2)若斜率为1的直线l经过点(1,0),与椭圆E相交于不同的两点M,N,在椭圆E上是否存在点P,使得△PMN的面积为 ,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题p:x∈[1,2],x2﹣a≥0;命题q:x0∈R,使得 +(a﹣1)x0+1<0.若“p或q”为真,“p且q”为假,则实数a的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在数列{an},{bn}中,已知a1=2,b1=4,且﹣an , bn , an+1成等差数列,﹣bn , an , bn+1也成等差数列. (Ⅰ)求证:数列{an+bn}和{an﹣bn}都是等比数列,并求数列{an}的通项公式;
(Ⅱ)若cn=(an﹣3n)log3[an﹣(﹣1)n],求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数y=f(x)的图象上每一点的纵坐标保持不变,横坐标伸长到原来的2倍,再将整个图象沿x轴向右平移 个单位,沿y轴向下平移1个单位,得到函数y= sinx的图象,则y=f(x)的解析式为(
A.y= sin(2x+ )+1
B.y= sin(2x﹣ )+1
C.y= sin( x+ )+1
D.y= sin( x﹣ )+1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=Asin(ωx+φ)(其中 )的图象如图所示,为了得到g(x)=sin2x的图象,则只需将f(x)的图象(
A.向右平移 个长度单位
B.向右平移 个长度单位
C.向左平移 个长度单位
D.向左平移 个长度单位

查看答案和解析>>

同步练习册答案