精英家教网 > 高中数学 > 题目详情

【题目】已知函数,下列说法正确的是__________.的值域是时,方程有两个不等实根;若函数有三个零点时,则经过有三条直线与相切.

【答案】①②③

【解析】

①:结合导数,用函数的单调性和奇偶性,求得的值域;②利用导数,证得方程有两个不等实根;③根据为偶函数,故可先考虑的情况,再由对称性得到的情况.当时,首先确定是函数的零点,令,分离常数,利用导数求得的取值范围.再根据对称性,求得的取值范围.④利用导数,求得过的切线的条数.

①函数的定义域为,且,所以为偶函数,图像关于轴对称.当时,.令解得,所以上递减,在上递增,,所以,所以上单调递增,从而.由于为偶函数,所以上单调递减,且.所以的值域是.故①正确.

②显然,是方程的根.方程可化为.时,即.根据①的分析,结合图像可知,当的图像没有公共点.故只需考虑的情况.由,即.构造函数,令,解得.所以上递减,在上递增,且,所以存在,使得.上递减,在上递增.,所以存在,使.综上所述,当时,方程有两个不等实根成立,故②正确.

为偶函数,故可先考虑的情况.当时,函数,故方程有三个不相等的实数根.首先是方程的根.

先证:令,令解得.所以上递减,在上递增.,当.,即,则在区间上先减后增,在区间上至多只有两个零点,不符合题意..

故下证:当时,由有两个不同的实数根.构造函数.,所以上单调递增,所以当时,.所以由可知上递减,在上递增,所以处取得极小值也即是最小值,所以.

综上所述,的取值范围是.由于为偶函数,根据函数图像的对称性可知的取值范围是.故③正确.

④当时,设经过点的切线的切点为,故切线方程为,将代入上式得,化简得.令,所以上单调递增.所以方程解得.所以当时,有两条切线.根据为偶函数,所以当时,也有两条切线方程. 所以经过有四条直线与相切,④错误.

特别的,当时,,即当时,处的切线的斜率为.当时,,即当时,处的切线的斜率为.

故答案为:①②③

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,是过点P(1,1),倾斜角为的直线,以坐标原点为极点,轴的正半轴为极轴的极坐标系中,曲线C的极坐标方程为.

(1)写出直线的参数方程及曲线C的直角坐标方程;

(2)直线L与曲线C交于AB两点,若弦AB被点P平分时,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为随机变量,从棱长为1的正方体的12条棱中任取两条,当两条棱相交时,;当两条棱平行时,的值为两条棱之间的距离;当两条棱异面时,

(1)求概率

(2)求的分布列,并求其数学期望

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列的前项和,已知.

1)求证:数列为等差数列,并求出其通项公式;

2)设,又对一切恒成立,求实数的取值范围;

3)已知为正整数且,数列共有项,设,又,求的所有可能取值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知焦点在轴上的椭圆上的点到两个焦点的距离和为10,椭圆经过点.

1)求椭圆的标准方程;

2)过椭圆的右焦点作与轴垂直的直线,直线上存在两点满足,求面积的最小值;

3)若与轴不垂直的直线交椭圆两点,交轴于定点,线段的垂直平分线交轴于点,且为定值,求点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知平面直角坐标系中,直线l的参数方程为为参数,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为.

1)求直线l的普通方程以及曲线C的参数方程;

2)过曲线C上任意一点E作与直线l的夹角为的直线,交l于点F,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线C的极坐标方程为ρ4cosθ,以极点为原点,极轴为x轴正半轴建立平面直角坐标系,设直线l的参数方程为t为参数).

1)求曲线C的直角坐标方程与直线l的普通方程;

2)设曲线C与直线l相交于PQ两点,以PQ为一条边作曲线C的内接矩形,求该矩形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来,在新高考改革中,打破文理分科的“”模式初露端倪,其中语、数、外三门课为必考科目,剩下三门为选考科目选考科目成绩采用“赋分制”,即原始分数不直接用,而是按照学生分数在本科目考试的排名来划分等级并以此打分得到最后得分,假定省规定:选考科目按考生成绩从高到低排列,按照占总体分别赋分分、分、分、分,为了让学生们体验赋分制计算成绩的方法,省某高中高一()班(共人)举行了以此摸底考试(选考科目全考,单料全班排名),知这次摸底考试中的物理成绩(满分分)频率分布直方图,化学成绩(满分分)茎叶图如图所示,小明同学在这次考试中物理分,化学多分.

(1)采用赋分制后,求小明物理成绩的最后得分;

(2)若小明的化学成绩最后得分为分,求小明的原始成绩的可能值;

(3)若小明必选物理,其他两科从化学、生物、历史、地理、政治五科中任选,求小明此次考试选考科目包括化学的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的方程为:,过点的直线的参数方程为为参数).

1)求直线的普通方程与曲线的直角坐标方程;

2)若直线与曲线交于两点,求的值,并求定点两点的距离之积.

查看答案和解析>>

同步练习册答案