【题目】已知椭圆离心率为,四个顶点构成的四边形的面积是4.
(1)求椭圆C的标准方程;
(2)若直线与椭圆C交于P,Q均在第一象限,直线OP,OQ的斜率分别为,,且(其中O为坐标原点).证明:直线l的斜率k为定值.
科目:高中数学 来源: 题型:
【题目】某省在2017年启动了“3+3”高考模式.所谓“3+3”高考模式,就是语文、数学、外语(简称语、数、外)为高考必考科目,从物理、化学、生物、政治、历史、地理(简称理、化、生、政、史、地)六门学科中任选三门作为选考科目.该省某中学2017级高一新生共有990人,学籍号的末四位数从0001到0990.
(1)现从高一学生中抽样调查110名学生的选考情况,问:采用什么样的抽样方法较为恰当?(只写出结论,不需要说明理由)
(2)据某教育机构统计,学生所选三门学科在将来报考专业时受限制的百分比是不同的.该机构统计了受限百分比较小的十二种选择的百分比值,制作出如下条形图.
设以上条形图中受限百分比的均值为,标准差为.如果一个学生所选三门学科专业受限百分比在区间内,我们称该选择为“恰当选择”.该校李明同学选择了化学,然后从余下五门选考科目中任选两门.问李明的选择为“恰当选择"的概率是多少?(均值,标准差均精确到0.1)
(参考公式和数据:,)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2019年是新中国成立七十周年,新中国成立以来,我国文化事业得到了充分发展,尤其是党的十八大以来,文化事业发展更加迅速,下图是从2013 年到 2018 年六年间我国公共图书馆业机构数(个)与对应年份编号的散点图(为便于计算,将 2013 年编号为 1,2014 年编号为 2,…,2018年编号为 6,把每年的公共图书馆业机构个数作为因变量,把年份编号从 1 到 6 作为自变量进行回归分析),得到回归直线,其相关指数,给出下列结论,其中正确的个数是( )
①公共图书馆业机构数与年份的正相关性较强
②公共图书馆业机构数平均每年增加13.743个
③可预测 2019 年公共图书馆业机构数约为3192个
A.0B.1C.2D.3
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数y=f(x),若存在x0,使得f(x0)=x0,则称x0是函数y=f(x)的一个不动点,设二次函数f(x)=ax2+(b+1)x+b-2
(Ⅰ)当a=2,b=1时,求函数f(x)的不动点;
(Ⅱ)若对于任意实数b,函数f(x)恒有两个不同的不动点,求实数a的取值范围;
(Ⅲ)在(Ⅱ)的条件下,若函数y=f(x)的图象上A,B两点的横坐标是函数f(x)的不动点,且直线是线段AB的垂直平分线,求实数b的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某厂有4台大型机器,在一个月中,一台机器至多出现1次故障,且每台机器是否出现故障是相互独立的,出现故障时需1名工人进行维修,每台机器出现故障需要维修的概率为.
(1)问该厂至少有多少名维修工人才能保证每台机器在任何时刻同时出现故障时能及时进行维修的概率不小于?
(2)已知1名工人每月只有维修1台机器的能力,每月需支付给每位工人1万元的工资,每台机器不出现故障或出现故障能及时维修,能使该厂产生5万元的利润,否则将不产生利润.若该厂现有2名工人,求该厂每月获利的均值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知在平面直角坐标系中,中心在原点,焦点在y轴上的椭圆C与椭圆的离心率相同,且椭圆C短轴的顶点与椭圆E长轴的顶点重合.
(1)求椭圆C的方程;
(2)若直线l与椭圆E有且仅有一个公共点,且与椭圆C交于不同两点A,B,求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】平面直角坐标系中,椭圆C:的离心率是,抛物线E:的焦点F是C的一个顶点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设P是E上的动点,且位于第一象限,E在点P处的切线与C交与不同的两点A,B,线段AB的中点为D,直线OD与过P且垂直于x轴的直线交于点M.
(i)求证:点M在定直线上;
(ii)直线与y轴交于点G,记的面积为,的面积为,求的最大值及取得最大值时点P的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com