精英家教网 > 高中数学 > 题目详情

【题目】若数列{an}是公差为2的等差数列,数列{bn}满足b1=1,b2=2,且anbn+bn=nbn+1.

(1)求数列{an},{bn}的通项公式;

(2)设数列{cn}满足,数列{cn}的前n项和为Tn,若不等式(-1)nλ<Tn对一切n∈N*恒成立,求实数λ的取值范围.

【答案】(1) ;(2)

【解析】试题分析:(1)数列满足 ,且,可得,解得,利用等差数列的通项公式可得,可得,化为,利用等比数列的通项公式可得;(2)设数列满足,利用“错位相减法”可得数列的前项和为,再利用数列的单调性与分类讨论即可得出.

试题解析:(1)∵数列满足 ,且,∴,解得,又数列是公差为2的等差数列,∴,∴,化为,∴数列是等比数列,公比为2,∴
(2)设数列满足,数列的前项和为,∴,∴,∴,不等式,化为: 时, ,∴ 时, ,∴,综上可得:实数的取值范围是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知动圆与圆内切,与圆外切,记圆心的轨迹为曲线.

(1)求曲线的方程.

(2)直线与曲线交于点,点为线段的中点,若,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=

(e为自然对数的底数),则f(e)=________,函数yf(f(x))-1的零点个数为________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 有两个不同的零点.

(1)求的取值范围;

(2)设 的两个零点,证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-4:坐标系与参数方程]

在直角坐标系中,过点的直线的参数方程为为参数).以原点为极点, 轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(1)求直线的普通方程和曲线的直角坐标方程;

(2)若直线与曲线相交于 两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱柱中,侧棱底面棱的中点.

(1)证明

(2)求二面角的余弦值;

(3)设点在线段上,且直线与平面所成角的正弦值为,求线段的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是奇函数,则实数m的值是______;若函数fx)在区间[-1a-2]上满足对任意x1x2,都有成立,则实数a的取值范围是______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题:

①若是定义在上的偶函数,且在上是增函数,,则

②若锐角满足c,则

③若,则恒成立;

④要得到的图像,只需将的图像向右平移个单位:

其中真命题的个数有(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知四棱锥的底面为菱形,且 中点.

(Ⅰ)证明: 平面

(Ⅱ)若 ,求平面与平面所成二面角的正弦值.

查看答案和解析>>

同步练习册答案