精英家教网 > 高中数学 > 题目详情
设△ABC的三边a,b,c所对的角分别为A,B,C,
a-c
b-c
=
sin(A+C)
sinA+sinC

(Ⅰ)求A的值;
(Ⅱ)求函数f(x)=2sin(x+
A
2
)cos(x+
A
2
)+2
3
cos2(x+
A
2
)-
3
的单调递增区间.
分析:(Ⅰ)△ABC中,由
a-c
b-c
=
sin(A+C)
sinA+sinC
利用正弦定理求得 a2=b2+c2-bc,再由余弦定理求得cosA=
b2+c2-a2
2bc
=
1
2
,从而求得 A的值.
(Ⅱ)利用二倍角公式,两角和差正弦公式化简函数f(x)的解析式为 2sin(2x+
3
),由 2kπ-
π
2
≤2x+
3
≤2kπ+
π
2
,k∈z,求得x的范围,即可得到函数f(x)的单调增区间.
解答:解:(Ⅰ)△ABC中,由
a-c
b-c
=
sin(A+C)
sinA+sinC
利用正弦定理可得
a-c
b-c
=
b
a+c

化简可得  a2=b2+c2-bc.
再由余弦定理可得 cosA=
b2+c2-a2
2bc
=
1
2
,∴A=
π
3

(Ⅱ)函数f(x)=2sin(x+
A
2
)cos(x+
A
2
)+2
3
cos2(x+
A
2
)-
3
=sin(2x+A)+
3
(cos2x+A)
=2sin(2x+A+
π
3
)=2sin(2x+
3
),
由 2kπ-
π
2
≤2x+
3
≤2kπ+
π
2
,k∈z,求得 kπ-
12
≤x≤kπ-
π
12
,k∈z,
故函数f(x)的单调增区间为[kπ-
12
,kπ-
π
12
],k∈z.
点评:本题主要考查正弦定理和余弦定理的应用,二倍角公式,两角和差正弦公式,正弦函数的增区间,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
m
=(
3
sinx,cosx),
n
=(cosx,cosx),
p
=(2
3
,1)

(1)若
m
n
,求sinx•cosx的值;
(2)设△ABC的三边a、b、c满足b2=ac,且边b所对的角B的取值集合为M,当x∈M时,求函数f(x)=
m
n
的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin(ωx+
π
6
)+sin(ωx-
π
6
)-2cos2
ωx
2
,其中ω是使f(x)能在x=
π
3
处取得最大值时的最小正整数.(Ⅰ)求ω的值;
(Ⅱ)设△ABC的三边a,b,c满足b2=ac且边b所对的角θ的取值集合为A,当x∈A时,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
a
b
,其中向量
a
=(2cosx,1),
b
=(cosx,
3
sin2x),x∈R.
(1)若f(x)=0且x∈(-
π
2
,0),求tan2x;
(2)设△ABC的三边a,b,c依次成等比数列,试求f(B)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

若向量
m
=(
3
sinωx,cosωx),
n
=(cosωx,-cosωx),已知函数f(x)=
m
n
(ω>0)的周期为
π
2

(1)求ω的值、函数f(x)的单调递增区间、函数f(x)的零点、函数f(x)的对称轴方程;
(2)设△ABC的三边a、b、c满足b2=ac,且边b所对的角为x,求此时函数f(x)的值域.

查看答案和解析>>

同步练习册答案