精英家教网 > 高中数学 > 题目详情

【题目】如图,是以为直径的半圆上异于点的点,矩形所在的平面垂直于该半圆所在平面,且

(Ⅰ)求证:

(Ⅱ)设平面与半圆弧的另一个交点为,

求证://;

,求三棱锥E-ADF的体积.

【答案】(1)通过证明,进而得到线线垂直的证明。

(2)利用平面的性质定理,可知线线平行,体积为

【解析】

试题(1)证明线线垂直,则可转化为线面垂直,由于圆周角的定义,则知,由矩形所在的平面垂直于该半圆所在平面,及面面垂直性质定理得,则可得平面平面

根据垂直的有关性质定理,则可得平面,故

2证明线线平行,则可用过平面的一个平行线作于该平面相交的平面,则该直线与交线平行由,平面,又由平面平面于直线,则根据线面平行的性质定理得,由平行的传递性得则体积可以用多种方法,有直接求法、割补法、转化法,对于此题可转化后用直接求法,求三棱锥E-ADF先转化;根据三棱锥的体积公式,则有

试题解析:

是半圆上异于的点, ,又矩形所在的平面垂直于该半圆所在平面由面面垂直性质定理得平面平面 平面,

2,平面,平面平面于直线根据线面平行的性质定理得,,②

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】中央政府为了应对因人口老龄化而造成的劳动力短缺等问题,拟定出台“延迟退休年龄政策”.为了解人们对“延迟退休年龄政策”的态度,责成人社部进行调研.人社部从网上年龄在15~65岁的人群中随机调查100人,调查数据的频率分布直方图和支持“延迟退休”的人数与年龄的统计结果如下:

(1)由以上统计数据填列联表,并判断能否在犯错误的概率不超过0.05的前提下认为以45岁为分界点的不同人群对“延迟退休年龄政策”的支持度有差异;

(2)若以45岁为分界点,从不支持“延迟退休”的人中按分层抽样的方法抽取8人参加某项活动.现从这8人中随机抽2人.

①抽到1人是45岁以下时,求抽到的另一人是45岁以上的概率.

②记抽到45岁以上的人数为,求随机变量的分布列及数学期望.

参考数据:

,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司欲生产一款迎春工艺品回馈消费者,工艺品的平面设计如图所示,该工艺品由直角和以为直径的半圆拼接而成,点为半圈上一点(异于),点在线段上,且满足.已知,设.

1)为了使工艺礼品达到最佳观赏效果,需满足,且达到最大.为何值时,工艺礼品达到最佳观赏效果;

2)为了工艺礼品达到最佳稳定性便于收藏,需满足,且达到最大.为何值时,取得最大值,并求该最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某研究性学习小组对春季昼夜温差大小与某花卉种子发芽多少之间的关系进行研究,他们分别记录了31日至35日的每天昼夜温差与实验室每天每100颗种子浸泡后的发芽数,得到如下资料:

日期

31

32

33

34

35

温差(℃)

10

11

13

12

9

发芽数(颗)

23

25

30

26

16

1)从31日至35日中任选2天,记发芽的种子数分别为,求事件“”的概率;

2)该小组发现种子的发芽数(颗)与昼夜温差(℃)呈线性相关关系,试求:线性回归方程.

(参考公式:线性回归方程中系数计算公式.其中表示样本均值.

参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知一个口袋有个白球,个黑球,这些球除颜色外全部相同,现将口袋中的球随机逐个取出,并依次放入编号为的抽屉内.

(1)求编号为的抽屉内放黑球的概率;

(2)口袋中的球放入抽屉后,随机取出两个抽屉中的球,求取出的两个球是一黑一白的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某射击运动员每次击中目标的概率都是,现采用随机模拟的方法估计该运动员射击次至多击中次的概率:先由计算器产生之间取整数值的随机数,指定表示没有击中目标,表示击中目标,因为射击次,故以每个随机数为一组,代表射击次的结果.经随机模拟产生了如下组随机数:

5727 0293 7140 9857 0347 4373 8636 9647 1417 4698

0371 6233 2616 8045 6011 3661 9597 7424 6710 4281

据此估计,射击运动员射击4次至多击中3次的概率为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论函数在定义域上的单调性;

(2)令函数,是自然对数的底数,若函数有且只有一个零点,判断的大小,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

(1)若f(1)<0,试判断函数单调性并求使不等式恒成立的的取值范围;

(2)若 上的最小值为-2,求m的值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

(1)求的单调区间和极值;

(2)证明:若存在零点,则在区间上仅有一个零点.

查看答案和解析>>

同步练习册答案