精英家教网 > 高中数学 > 题目详情
已知函数f(x)=2x2+ax,g(x)=lnx,F(x)=f(x)+g(x).
(Ⅰ)若F(x)在x=1处取得极小值,求F(x)的极大值;
(Ⅱ)若F(x)在区间(0,
14
)
上是增函数,求实数a的取值范围;
(Ⅲ)若a=3,问是否存在与曲线y=f(x)和y=g(x)都相切的直线?若存在,判断有几条?并加以证明,若不存在,说明理由.
分析:(Ⅰ)求出F'(x),因为函数在x=1处取得极值,即得到F'(1)=0,代入求出a与b得到函数解析式,然后讨论利用x的取值范围讨论函数的增减性,得到F(x)极大值;
(Ⅱ)对函数F(x)=2x2+ax+lnx进行求导,转化成F′(x)在(0,
1
4
)上恒有f′(x)≥0,求出参数a的取值范围
(Ⅲ)对于存在性问题,可先假设存在,即假设存在,使直线m既是曲线y=f(x)的切线,又是曲线y=g(x)的切线,再利用导数的几何意义,求出曲线y=g(x)的切线和曲线y=f(x)的切线,若出现矛盾,则说明假设不成立,即不存在;否则存在.
解答:解:(Ⅰ)F(x)=f(x)+g(x)=2x2+ax+lnx,
F′(x)=4x+a+
1
x
(x>0)
,又F(x)在x=1处取得极小值
∴F'(1)=4+a+1=0,∴a=-5,F(x)=2x2-5x+lnx
F′(x)=4x-5+
1
x
=
4x2-5x+1
x
=
(4x-1)(x-1)
x
(x>0)

x (0,
1
4
)
1
4
(
1
4
,1)
1 (1,+∞)
F'(x) + 0 - 0 +
F(x) 极大值 极小值
∴F(x)的极大值为F(
1
4
)=-
9
8
-2ln2

(Ⅱ)由F(x)在区间(0,
1
4
)
上是增函数得
x∈(0,
1
4
)
时,F′(x)=4x+a+
1
x
≥0
恒成立,设h(x)=-(4x+
1
x
)

则a≥h(x),又h′(x)=-(4-
1
x2
)=
1-4x2
x2
>0
,∴h(x)在(0,
1
4
)
上是增函数,
∴a≥h(x)maxa≥h(
1
4
)=-5
,即实数a的取值范围为[-5,+∞).
(Ⅲ)当a=3时,f(x)=2x2+3x,g(x)=lnx,∴f'(x)=4x+3,g′(x)=
1
x

设直线l与曲线y=f(x)和y=g(x)都相切,切点分别为A(x1,y1),B(x2,y2
则y1=2x12+3x1,y2=lnx2
∴l:y-(2x12+3x1)=(4x1+3)(x-x1),即y=(4x1+3)x-2x12
又l过点B(x2,y2)且f'(x)=g'(x),∴y2=(4x1+3)x2-2x124x1+3=
1
x2

∴lnx2=(4x1+3)x2-2x12,∴-ln(4x1+3)=1-2x12
方程2x12-ln(4x1+3)-1=0有根,设φ(x)=2x2-ln(4x+3)-1,
φ′(x)=4x-
4
4x+3
=
4(4x2+3x-1)
4x+3
=
4(4x-1)(x+1)
4x+3
(x>-
3
4
)

x∈(-
3
4
1
4
)
时,φ'(x)<0,φ(x)是减函数,
x∈(
1
4
,+∞)
时,φ'(x)>0,φ(x)是增函数,
φ(x)min=φ(
1
4
)=-
7
8
-ln4<0

又当x>-
3
4
且x趋向于-
3
4
时,φ(x)趋向于+∞,
φ(
e5-3
4
)=2(
e5-3
4
)2-lne5-1>2(
25-3
4
)2-6>0

∴φ(x)在区间(-
3
4
1
4
)
(
1
4
,+∞)
上各有一个根.
∴与曲线y=f(x)和y=g(x)都相切的直线存在,有2条.
点评:本小题主要考查直线的斜率、导数的几何意义、利用导数研究曲线上某点切线方程等基础知识,考查运算求解能力.属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2-
1
x
,(x>0),若存在实数a,b(a<b),使y=f(x)的定义域为(a,b)时,值域为(ma,mb),则实数m的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2+log0.5x(x>1),则f(x)的反函数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2(m-1)x2-4mx+2m-1
(1)m为何值时,函数的图象与x轴有两个不同的交点;
(2)如果函数的一个零点在原点,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•上海)已知函数f(x)=2-|x|,无穷数列{an}满足an+1=f(an),n∈N*
(1)若a1=0,求a2,a3,a4
(2)若a1>0,且a1,a2,a3成等比数列,求a1的值
(3)是否存在a1,使得a1,a2,…,an,…成等差数列?若存在,求出所有这样的a1,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-5:不等式选讲
已知函数f(x)=2|x-2|-x+5,若函数f(x)的最小值为m
(Ⅰ)求实数m的值;
(Ⅱ)若不等式|x-a|+|x+2|≥m恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案