精英家教网 > 高中数学 > 题目详情

已知R上的连续函数g(x)满足:①当时,恒成立(为函数的导函数);②对任意的都有,又函数满足:对任意的,都有成立。当时,。若关于的不等式恒成立,则的取值范围是(   )

A. B.
C. D.

D

解析试题分析:因为函数g(x)满足:当x>0时,g'(x)>0恒成立,且对任意x∈R都有g(x)=g(-x),所以函数g(x)是R上的偶函数且在[0,+∞)上为单调递增函数,且有g(|x|)=g(x),所以g|f(x)|≤g(a2-a+2)在R上恒成立,∴|f(x)|≤|a2-a+2|对恒成立,
只要使得定义域内|f(x)|max≤|a2-a+2|,由于当时,,
=0解得x=-1或x=1,可得函数在(和(1,+)上是增函数,在(-1,1)上是减函数,f(-1)=2是极大值,f(1)=-2是极小值.
所以函数-1]和[1,]上是增函数,在(-1,1)上是减函数,
即f()<f(-1)=2,f(1)>f()=f[(]=f[(]=f(=,
所以函数-1]和[1, ]上最大值是2.所以2≤|a2-a+2|,解得,故选D.
考点:1.函数的周期性;2.抽象函数及其应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:单选题

函数的定义域是(   )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

函数的图像大致为(     )

A.                        B.                     C.                D.

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

已知函数。又数列满足,且,则正实数的取值范围是(     )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

函数在区间上的最小值为(   )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

定义在R上的奇函数满足,且不等式上恒成立,则函数=的零点的个数为(   )

A.4 B.3 C.2 D.1

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

已知函数为偶函数,且上递减,设,则的大小关系正确的是(     )

A. B. C. D. 

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

已知定义在上的偶函数满足,且在区间上是减函数则(    )

A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

函数,则下列关系中一定正确的是

A.
B.
C.
D.

查看答案和解析>>

同步练习册答案