【题目】已知函数图象上相邻的两个最值点为,.
(1)求的解析式;
(2)求函数的单调递增区间;
(3)求函数在区间上的最大值和最小值.
科目:高中数学 来源: 题型:
【题目】小王大学毕业后,决定利用所学专业进行自主创业.经过市场调查,生产某小型电子产品需投入年固定成本3万元,每生产x万件,该产品需另投入流动成本万元.在年产量不足8万件时,,在年产量不小于8万件时,每件产品的售价为5元.通过市场分析,小王生产的商品能当年全部售完.
(1)写出年利润单位:万元关于年产量单位:万件的函数解析式.
(2)年产量为多少万件时,小王在这一商品的生产中所获利润最大?最大利润是多少?
注:年利润年销售收入固定成本流动成本
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知圆的圆心在轴右侧,原点和点都在圆上,且圆在轴上截得的线段长度为3.
(1)求圆的方程;
(2)若,为圆上两点,若四边形的对角线的方程为,求四边形面积的最大值;
(3)过点作两条相异直线分别与圆相交于,两点,若直线,的斜率分别为,,且,试判断直线的斜率是否为定值,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知,抛物线: 与抛物线: 异于原点的交点为,且抛物线在点处的切线与轴交于点,抛物线在点处的切线与轴交于点,与轴交于点.
(1)若直线与抛物线交于点, ,且,求抛物线的方程;
(2)证明: 的面积与四边形的面积之比为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P-ABCD中,AD∥BC,ADC=PAB=90°,BC=CD=AD.E为棱AD的中点,异面直线PA与CD所成的角为90°.
(I)在平面PAB内找一点M,使得直线CM∥平面PBE,并说明理由;
(II)若二面角P-CD-A的大小为45°,求直线PA与平面PCE所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】 设函数
(1)如果,那么实数___;
(2)如果函数有且仅有两个零点,那么实数的取值范围是___.
【答案】或4;
【解析】
试题分析:由题意 ,解得或;
第二问如图:
的图象是由两条以 为顶点的射线组成,当在A,B 之间(包括不包括)时,函数和有两个交点,即有两个零点.所以 的取值范围为 .
考点:1.分段函数值;2.函数的零点.
【题型】填空题
【结束】
15
【题目】已知函数的部分图象如图所示.
()求函数的解析式.
()求函数在区间上的最大值和最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com