精英家教网 > 高中数学 > 题目详情
9.若不等式组$\left\{\begin{array}{l}{x≥0}\\{x+3y≥4}\\{3x+y≤4}\end{array}\right.$,所表示的平面区域被直线y=kx+$\frac{4}{3}$分为面积相等的两部分,则k的值是$\frac{7}{3}$.

分析 先根据约束条件,画出可行域,求出可行域顶点的坐标,再利用几何意义求面积即可

解答 解:不等式组$\left\{\begin{array}{l}{x≥0}\\{x+3y≥4}\\{3x+y≤4}\end{array}\right.$,所表示的平面区域如图示:
由图可知,直线y=kx+$\frac{4}{3}$恒经过点A(0,$\frac{4}{3}$),当直线y=kx+$\frac{4}{3}$再经过BC的中点D($\frac{1}{2}$,$\frac{5}{2}$)时,平面区域被直线y=kx+$\frac{4}{3}$分为面积相等的两部分,
当x=$\frac{1}{2}$,y=$\frac{5}{2}$时,代入直线y=kx+$\frac{4}{3}$的方程得:
k=$\frac{7}{3}$;
故答案为:$\frac{7}{3}$

点评 本题主要考查了用平面区域二元一次不等式组,以及简单的转化思想和数形结合的思想,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知F1、F2是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点,点P是该双曲线上的任意一点,若△PF1F2的内切圆半径为r,则r的取值范围是(  )
A.(0,a)B.(0,b)C.(0,$\sqrt{{a}^{2}+{b}^{2}}$)D.(0,$\sqrt{ab}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的左右焦点分别为F1,F2,e为双曲线的离心率,P是双曲线右支上的点,△PF1F2的内切圆的圆心为I,过F2作直线PI的垂线,垂足为B,则OB=a.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知f(x)=Asin(ωx+φ)(A>0,ω>0,-π<φ<π)的图象如图所示.
(1)根据图象写出f(x)的解析式;
(2)A为锐角三角形的一个内角,求f(A)的最大值,及当f(A)取最大值时A的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)的图象是连续不断的,有如下的x,f(x)对应值表:
x1234567
f(x)123.521.5-7.8211.57-53.7-126.7-129.6
那么函数f(x)在区间[1,6]上的零点至少有(  )
A.5个B.4个C.3个D.2个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.平面α的法向量$\overrightarrow{{n}_{1}}$=(x,1,-2),平面β的法向量$\overrightarrow{{n}_{2}}$=(-1,y,$\frac{1}{2}$),若α∥β,则x+y=$\frac{15}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.某农户计划种植黄瓜和冬瓜,种植面积不超过50亩,投入资金不超过54万元,假设种植黄瓜与冬瓜的产量、成本和售价如表:
年产量/亩年种植成本/亩每吨售价
黄瓜4吨1.2万元0.55万元
冬瓜6吨0.9万元0.3万元
为使一年的种植总利润(总利润=总销售收入-总种植成本)最大,那么黄瓜与冬瓜的种植面积(单位:亩)分别为(  )
A.50,0B.30,20C.20,30D.0,50

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知圆Q过三点A(1,0),B(3,0),C(0,1),则圆Q的标准方程为(x-2)2+(y-2)2=5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若数列{an}满足a1=$\sqrt{3}$,an+1=[an]+$\frac{1}{\{{a}_{n}\}}$([an]与{an}分别表示an的整数部分与小数部分),则a2016=(  )
A.3023+$\sqrt{3}$B.3023+$\frac{\sqrt{3}-1}{2}$C.3020+$\sqrt{3}$D.3020+$\frac{\sqrt{3}-1}{2}$

查看答案和解析>>

同步练习册答案