精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥P-ABCD中,底面ABCD是平行四边形,∠BCD=135°,侧面PAB底面ABCDBAP=90°AB=AC=PA=2EF分别为BCAD的中点,点M在线段PD上.

(1)求证:EF⊥平面PAC

(2)如果直线ME与平面PBC所成的角和直线ME与平

ABCD所成的角相等,求的值.

【答案】(1)见解析;(2) .

【解析】试题分析: 由平行四边形的性质可得,即,由面面垂直的性质得出平面,故,从而平面

为原点建立空间直角坐标系,设 ,求出平面,平面的法向量以及的坐标,根据线面角相等列方程求解即可得到答案

解析:(1)证明:在平行四边形中,因为

所以.由分别为的中点,得, 所以

因为侧面底面,且,所以底面

又因为底面,所以

又因为平面平面,所以平面

(2)解:因为底面,所以两两

垂直,以分别为,建立空间直角坐标系,则

所以

,则

所以,易得平面

的法向量

设平面的法向量为,由, 得

因为直线与平面所成的角和此直线与平面所成的角相等,

所以,即,所以

解得,或(舍). 综上所得:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知直线的参数方程为为参数).以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(1)求曲线的直角坐标方程;

(2)已知点,直线与曲线交于两点,且,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其最小正周期为.

1)求的表达式;

2)将函数的图象向右平移个单位长度后,再将得到的图象上各点的横坐标伸长到原来的倍(纵坐标不变),得到函数的图象,若关于的方程在区间上有且只有一个实数解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是平行四边形,,侧面底面 分别为的中点,点在线段上.

(Ⅰ)求证:平面

(Ⅱ)如果直线与平面所成的角和直线与平面所成的角相等,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以下表格记录了甲、乙两组各四名同学的植树棵数.乙组记录中有一个数据模糊,无法确认,在图中以表示.

甲组

9

9

11

11

乙组

8

9

10

1)如果,求乙组同学植树棵数的平均数和方差;

2)如果,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数为19的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求函数的极值;

(2)若存在与函数的图象都相切的直线,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】取数游戏:每次游戏中,游戏人按动游泳按钮,就从如图:的三个窗口中各弹出一个数字,其中:最左边窗口可随机弹出数字4或3,中间窗口可随机弹出3或2,最右边窗口可随机弹出2或1.若弹出的三个数字为“顺子”(如:432),则可获奖10元,若有相邻两位数字相同,则可获奖8元,其他情况获奖-2元.甲玩了8次游戏后,乙问甲的获奖情况,甲说:“23元有余,28元不足,3除不尽.”那么甲在这8次游戏中得到“顺子”、“相邻两位数字相同”、“其他情况”的次数依次为( )

A. 0,4,4 B. 2,2,4 C. 2,3,3 D. 1,3,4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“一带一路”是“丝绸之路经济带”和“21世纪海上丝绸之路”的简称.某市为了了解人们对“一带一路”的认知程度,对不同年龄和不同职业的人举办了一次“一带一路”知识竞赛,满分100分(90分及以上为认知程度高).现从参赛者中抽取了人,按年龄分成5组,第一组: ,第二组: ,第三组: ,第四组: ,第五组: ,得到如图所示的频率分布直方图,已知第一组有6人.

(1)求

(2)求抽取的人的年龄的中位数(结果保留整数);

(3)从该市大学生、军人、医务人员、工人、个体户 五种人中用分层抽样的方法依次抽取6人,42人,36人,24人,12人,分别记为1~5组,从这5个按年龄分的组和5个按职业分的组中每组各选派1人参加知识竞赛,分别代表相应组的成绩,年龄组中1~5组的成绩分别为93,96,97,94,90,职业组中1~5组的成绩分别为93,98,94,95,90.

(Ⅰ)分别求5个年龄组和5个职业组成绩的平均数和方差;

(Ⅱ)以上述数据为依据,评价5个年龄组和5个职业组对“一带一路”的认知程度.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列满足,则①数列单调递增;②;③对于给定的实数,若对任意的成立,必有.上述三个结论中正确个数是(

A.1B.2C.3D.0

查看答案和解析>>

同步练习册答案