精英家教网 > 高中数学 > 题目详情

【题目】已知圆 的有 条弦,且任意两条弦都彼此相交,任意三条弦不共点,这 条弦将圆 分成了 个区域,(例如:如图所示,圆 的一条弦将圆 分成了2(即 )个区域,圆 的两条弦将圆 分成了4(即 )个区域,圆 的3条弦将圆 分成了7(即 )个区域),以此类推,那么 之间的递推式关系为:

【答案】
【解析】因为圆 的第 条弦与前 条弦都彼此相交且不共点,则它被前 条弦分割成 段,每一段将它所在原区域一分为二,即在原区域上增加了 个,故 .
【考点精析】解答此题的关键在于理解数列的通项公式的相关知识,掌握如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】数列{an}满足2nan+1=(n+1)an , 其前n项和为Sn , 若 ,则使得 最小的n值为(
A.8
B.9
C.10
D.11

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】70年代中期,美国各所名牌大学校园内,人们都像发疯一般,夜以继日,废寝忘食地玩一个数学游戏.这个游戏十分简单:任意写出一个自然数N,并且按照以下的规律进行变换:如果是个奇数,则下一步变成3N+1;如果是个偶数,则下一步变成 .不单单是学生,甚至连教师、研究员、教授与学究都纷纷加入.为什么这个游戏的魅力经久不衰?因为人们发现,无论N是怎样一个数字,最终都无法逃脱回到谷底1.准确地说,是无法逃出落入底部的4﹣2﹣1循环,永远也逃不出这样的宿命.这就是著名的“冰雹猜想”.按照这种运算,自然数27经过十步运算得到的数为(
A.142
B.71
C.214
D.107

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,直线l与抛物线y2=4x相交于不同的A、B两点.
(1)如果直线l过抛物线的焦点,求 · 的值;
(2)如果 · =-4,证明直线l必过一定点,并求出该定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ex(sinx+cosx).
(1)如果对于任意的x∈[0, ],f(x)≥kx+excosx恒成立,求实数k的取值范围;
(2)若x∈[﹣ ],过点M( ,0)作函数f(x)的图象的所有切线,令各切点的横坐标按从小到大构成数列{xn},求数列{xn}的所有项之和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过抛物线y2=4x的焦点F的直线交抛物线于A,B两点,且|AF|=2|BF|,则直线AB的斜率为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆过圆与直线的交点,且圆上任意一点关于直线 的对称点仍在圆上.

(1)求圆的标准方程;

(2)若圆轴正半轴的交点为,直线与圆交于两点(异于点),且点满足,,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线 的焦点为 是抛物线上横坐标为4,且位于 轴上方的点, 到抛物线准线的距离等于5,过 垂直于 轴,垂足为 的中点为
(1)求抛物线的方程;
(2)若过 ,垂足为 ,求点 的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂生产某种产品,每生产1吨产品需人工费4万元,每天还需固定成本3万元.经过长期调查统计,每日的销售额(单位:万元)与日产量(单位:吨)满足函数关系,已知每天生产4吨时利润为7万元.

(1)求的值;

(2)当日产量为多少吨时,每天的利润最大,最大利润为多少?

查看答案和解析>>

同步练习册答案