精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)x33xyf(x)上一点P(1,-2),过点P作直线l.

(1)求使直线lyf(x)相切且以P为切点的直线方程;

(2)求使直线lyf(x)相切且切点异于P的直线方程.

【答案】(1)所求直线方程为y=-2(2) 9x4y10.

【解析】(1)根据导数的几何意义求曲线y=f(x)以P(1,-2)为切点的线方程;

由f(x)=x3-3x得f′(1)=0,又直线过点P(1,-2),所以所求直线方程为y=-2;

(2)首先设出过P(1,-2)的直线l与y=f(x)切于另一点Q(x0,y0) ),利用,即,整理得x03-3x0+2=3(x02-1)·(x0-1),解得x0=1(舍)或x0=-,所求直线的斜率为k=3×(-1)=-方程为

y-(-2)=- (x-1),即9x+4y-1=0.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示,在多面体ABCDE中,△BCD是边长为2的正三角形,AE∥DB,AE⊥DE,2AE=BD,DE=1,面ABDE⊥面BCD,F是CE的中点.
(Ⅰ)求证:BF⊥CD;
(Ⅱ)求二面角C﹣BF﹣D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4﹣5:不等式选讲
设函数f(x)=|2x﹣4|+|x+2|
(1)求函数y=f(x)的最小值;
(2)若不等式f(x)≥|a+4|﹣|a﹣3|恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知p:m∈R,且m+1≤0,q:x∈R,x2+mx+1>0恒成立,若p∧q为假命题且p∨q为真命题,则m的取值范围是__________________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为分析学生入学时的数学成绩对高一年级数学学习的影响,在高一年级学生中随机抽取10名学生,统计他们入学时的数学成绩和高一期末的数学成绩,如下表:

学生编号

1

2

3

4

5

6

7

8

9

10

入学成绩x(分)

63

67

45

88

81

71

52

99

58

76

高一期末

成绩y(分)

65

78

52

82

92

89

73

98

56

75

(1)求相关系数r;

(2)求y关于x的线性回归方程;

(3)若某学生入学时的数学成绩为80分,试估计他高一期末的数学成绩.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C的对边分别是a、b、c,已知向量 =(cosA,cosB), =(a,2c﹣b),且
(1)求角A的大小;
(2)若a=4,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列五个命题:

①将A,B,C三种个体按3∶1∶2的比例分层抽样调查,若抽取的A种个体有9个,则样本容量为30;

②一组数据1,2,3,3,4,5的平均数、众数、中位数都相同;

③甲组数据的方差为5,乙组数据为5,6,9,10,5,那么这两组数据中比较稳定的是甲;

④已知具有相关关系的两个变量满足的回归直线方程为=1-2x,则x每增加1个单位,y平均减少2个单位;

⑤统计的10个样本数据为125,120,122,105,130,114,116,95,120,134,则样本数据落在[114.5,124.5)内的频率为0.4.

其中是真命题的为(  )

A. ①②④ B. ②④⑤ C. ②③④ D. ③④⑤

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设复数

(1)若z在复平面内对应的点在第三象限,求m的取值范围;

(2)若z在复平面内对应的点在直线xy-1=0上,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C1:(a>b>0)的离心率为,x轴被曲线C2:y=x2-b截得的线段长度等于C1的短轴长.已知C2y轴的交点为M,过坐标原点O的直线lC2相交于点A,B,直线MA,MB分别与C1相交于点D,E.

(1)C1,C2的方程;

(2)求证:MA⊥MB;

(3)△MAB,△MDE的面积分别为S1,S2,,λ的取值范围.

查看答案和解析>>

同步练习册答案