精英家教网 > 高中数学 > 题目详情

已知m>0,a,b∈R,求证:数学公式

证明:∵m>0,
∴1+m>0,
∴要证
即证(a+mb)2≤(1+m)(a2+mb2),
即证m(a2-2ab+b2)≥0,
即证(a-b)2≥0,
而(a-b)2≥0显然成立,

分析:本题要证不等式要证成立,两边同乘以公分母,只要证(a+mb)2≤(1+m)(a2+mb2),化简整理即证m(a2-2ab+b2)≥0,即证(a-b)2≥0,而(a-b)2≥0显然成立,得到原不等式成立.
点评:本题是从题目的结论出发,逐步寻求使它成立的充分条件,直直至最后,把要证明结论归结为判定一个明显的成立的条件为止,这个明显的条件可以是已知条件,定理,定义或公理.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知m>0,a,b∈R,求证:(
a+mb
1+m
)2
a2+mb2
1+m

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网A(选修4-1:几何证明选讲)
如图,AB是⊙O的直径,C,F是⊙O上的两点,OC⊥AB,过点F作⊙O的切线FD交AB的延长线于点D,连接CF交AB于点E.
求证:DE2=DB•DA.
B(选修4-2:矩阵与变换)
求矩阵
21
12
的特征值及对应的特征向量.
C(选修4-4:坐标系与参数方程)
已知曲线C的极坐标方程是ρ=2sinθ,直线l的参数方程是
x=-
3
5
t+2
y=
4
5
t
(t为参数).
(Ⅰ)将曲线C的极坐标方程化为直角坐标方程;
(Ⅱ)设直线l与x轴的交点是M,N是曲线C上一动点,求MN的最大值.
D(选修4-5:不等式选讲)
已知m>0,a,b∈R,求证:(
a+mb
1+m
)2
a2+mb2
1+m

查看答案和解析>>

科目:高中数学 来源:模拟题 题型:证明题

已知m>0,a,b∈R,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

已知m>0,ab∈R,求证:2.

查看答案和解析>>

同步练习册答案