精英家教网 > 高中数学 > 题目详情
12.已知f(x)=$\left\{\begin{array}{l}{e^x}+a{x^2},x>0\\ \frac{1}{e^x}+a{x^2},x<0\end{array}$,若函数f(x)有四个零点,则实数a的取值范围是(  )
A.(-∞,-e)B.(-∞,-$\frac{{e}^{2}}{4}$)C.(-∞,-$\frac{{e}^{3}}{9}$)D.(-∞,-$\frac{{e}^{4}}{16}$)

分析 由题意可知:函数f(x)为偶函数,只需ex+ax=0有两个正根,即-$\frac{{e}^{x}}{{x}^{2}}$=a有两个正根,设g(x)=-$\frac{{e}^{x}}{x}$,设g(x)=-$\frac{{e}^{x}}{{x}^{2}}$,求导g′(x)=-$\frac{{e}^{2}{x}^{2}-2x{e}^{x}}{{x}^{4}}$=-$\frac{{e}^{x}({x}^{2}-2x)}{{x}^{4}}$,利用函数的单调性求得g(x)的最大值,要使-$\frac{{e}^{x}}{{x}^{2}}$=a有两个正跟,即使g(x)与y=a有两个交点,则实数a的取值范围(-∞,-$\frac{{e}^{2}}{4}$).

解答 解:由函数f(x)为偶函数,可知使函数f(x)有四个零点,
只需要ex+ax2=0有两个正根,
即-$\frac{{e}^{x}}{{x}^{2}}$=a有两个正根,
设g(x)=-$\frac{{e}^{x}}{{x}^{2}}$,求导g′(x)=-$\frac{{e}^{2}{x}^{2}-2x{e}^{x}}{{x}^{4}}$=-$\frac{{e}^{x}({x}^{2}-2x)}{{x}^{4}}$,
令g′(x)>0,解得:0<x<2,g(x)在(0,2)单调递增,
令g′(x)<0,解得:x>2,g(x)在(2,+∞)单调递减,
∴g(x)在x=2时取最大值,最大值g(2)=-$\frac{{e}^{2}}{4}$,
要使-$\frac{{e}^{x}}{{x}^{2}}$=a有两个正根,即使g(x)与y=a有两个交点,
∴实数a的取值范围(-∞,-$\frac{{e}^{2}}{4}$),
故选B.

点评 本题考查函数的奇偶性的应用,考查利用导数求函数的单调性及最值,考查导数的求导公式,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.若圆C1:(x-a)2+y2=4与圆C2:x2+(y-$\sqrt{5}$)2=a2相外切,则实数a的值为(  )
A.$\frac{1}{4}$B.$\frac{1}{4}$或-$\frac{1}{4}$C.$\frac{1}{2}$或-$\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左、右焦点分别为${F_1},F_2^{\;}$,上、下顶点分别为B1,B2,右顶点为A,直线AB1与B2F1交于点D.若2|AB1|=3|B1D|,则C的离心率等于$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设集合A={2,0,11},则集合A的真子集个数为7.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.方程x2+2x+n2=0(n∈[-1,2])有实根的概率为(  )
A.$\frac{2}{3}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左焦点为F,A,B分别为双曲线C左、右两支上的点,且四边形ABOF(O为坐标原点)为菱形,则双曲线C的离心率为(  )
A.$\sqrt{5}$B.2$\sqrt{3}$C.$\sqrt{3}$+1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图所示,菱形ABEF⊥直角梯形ABCD,∠BAD=∠CDA=90°,∠ABE=60°,AB=2AD=2CD=2,H是EF的中点
(1)求证:平面AHC⊥平面BCE; 
(2)求此几何体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知等差数列{an}满足a2=2,点(a4,a6)在直线x+2y-16=0上.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=an+2${\;}^{{a}_{n}}$,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知U=R,集合A={x|a-2<x<a+2},B={x|x2-(a+2)x+2a=0},a∈R,
(1)若a=0,求A∪B;
(2)若(∁UA)∩B≠∅,求a的取值范围.

查看答案和解析>>

同步练习册答案